scholarly journals Synthesis, Crystal Structure, and DFT Study of Ethyl 1-(2-(Hydroxyimino)-2-phenylethyl)-3-phenyl-1H-pyrazole-5-carboxylate

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jin-Hui Zhou ◽  
Liang-Wen Zheng ◽  
Mao-Cai Yan ◽  
Mao-Jian Shi ◽  
Jing Liu ◽  
...  

The crystal structure of ethyl 1-(2-(hydroxyimino)-2-phenylethyl)-3-phenyl-1H-pyrazole-5-carboxylate has been determined by X-ray single crystal diffraction. The crystal of the title compound is the monoclinic space group P2/c with unit cell parameters of a=8.634(2) Å, b=9.616(2) Å, c=22.190(3) Å, β=99.2652°, V=1818.3(4) Å3, and Z=4. The dihedral angles formed by the planes of the central pyrazole ring and the adjacent benzene rings are 73.60(7)° and 3.55(7)°, respectively. The combination of the weak intermolecular C-H⋯O and N-H⋯O hydrogen-bonding interactions stabilizes the crystal packing. The geometries of its Z and E isomers and the corresponding transition state (TS), as well as the dimer of its Z isomer, are optimized using the B3LYP hybrid functional coupled with def-TZVP triple-zeta polarized basis set. The bond angles and bond lengths of the optimized structure of Z dimer are very consistent with those of its single crystal parameters. Double-hybrid functional PWPB95-D3 in combination with very highly accurate basis set def2-QZVP is employed to evaluate accurate energy of each isomer and TS. The calculated equilibrium constant between Z and E isomers corresponds to the [Z]/[E] ratio of 4.29. Mulliken atomic charges and electrostatic potential (ESP) on molecular van der Waals (vdW) surface are calculated in order to study and predict the intermolecular interactions. The molecular total energies and frontier orbital analysis are also discussed.

2015 ◽  
Vol 70 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Olaf Reckeweg ◽  
Francis J. DiSalvo

AbstractThe new compounds LiK[C(CN)3]2 and Li[C(CN)3]·½ (H3C)2CO were synthesized and their crystal structures were determined. Li[C(CN)3]·½ (H3C)2CO crystallizes in the orthorhombic space group Ima2 (no. 46) with the cell parameters a=794.97(14), b=1165.1(2) and c=1485.4(3) pm, while LiK[C(CN)3]2 adopts the monoclinic space group P21/c (no. 14) with the cell parameters a=1265.7(2), b=1068.0(2) and c=778.36(12) pm and the angle β=95.775(7)°. Single crystals of K[C(CN)3] were also acquired, and the crystal structure was refined more precisely than before corroborating earlier results.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Akhmatkhodja N. Yunuskhodjayev ◽  
Shokhista F. Iskandarova ◽  
Vahobjon Kh. Sabirov

Abstract The crystal structure of a copper(II) complex of protonated sildenafil, CuCl3C22H31N6O4S⋅2H2O was studied by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P21/n with the unit cell parameters a = 15.4292(2), b = 9.06735(12), c = 21.1752(2) Å, V = 2945.48(7) Å3, Z = 4. The Cu atom is coordinated by the sildenafil ligand via the N2 atom of the pyrazolopyrimidine ring and by three chloride anions. Sildenafil is protonated at the methylated N6 atom of the piperazine ring and it is cation ligand with a 1+ charge.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Manikandan Jayaraman ◽  
Rajarathinam Balakrishnan ◽  
Kannan Muthu ◽  
Manivel Panneerselvam ◽  
Vasuki Gnanasambandam ◽  
...  

The crystal structures of the compounds C15H14N4O2 (1) and C16H16N4O4 (2) are reported and analyzed by single crystal X-ray diffraction technique. Compounds (1) and (2) crystallized in monoclinic space group P21/c and Cc with four molecules in the unit cell, respectively. The unit cell parameters for compound (1) are a = 11.4501(15) Å, b = 9.7869(11) Å, c = 12.3653(15) Å, β = 90.997(11)°, and Volume = 1385.5(3) Å3 and for compound (2) are a = 13.865(2) Å, b = 6.9538(8) Å, c = 16.841(2) Å, β = 98.602(11)°, and Volume = 1605.4(4) Å3. In both compounds (1) and (2), the pyrrolidine ring adopts half-chair conformation. Moreover, both inter- and intramolecular N–H⋯O hydrogen bonds stabilize the crystal structure and play a crucial role in crystal packing. This intermolecular interaction alone constructs C11 chain motif in both compounds. It is also supported by weak intermolecular π-π interaction which is essential for the stability of the crystal packing. Further, the Density Functional Theory (B3LYP) method with standard 6-31G basis set was used in the calculation and calculated geometrical parameter is correlated with the corresponding experimental data. The obtained HOMO and LUMO energies are in negative values indicating that the compounds are in stable state.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Youssef Kandri Rodi ◽  
Santiago V. Luis ◽  
Inés Martí ◽  
Vicente Martí-Centelles ◽  
Younès Ouzidan

The crystal and molecular structure of 6-bromo-2-(furan-2-yl)-3-(prop-2-ynyl)-3H-imidazo[4,5-b]pyridine (C13H8BrN3O) has been investigated from single crystal X-ray diffraction data. The primary focus is to investigate the molecular geometry of this compound in the solid state along with the associated intermolecular hydrogen bonding and relatedπ-πinteractions present in the crystal packing. This compound crystallizes in the monoclinic space groupP21/nwith cell parameters:a= 4.39655(19) Å,b= 13.5720(5) Å,c= 20.0471(5) Å,β= 94.753(3),V= 1192.10(7) Å3,D= 1.683 g·cm−3, andZ= 4. The crystal structure is stabilized byπ-πinteractions and intermolecular C–H⋯N and C–H⋯O interactions.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Dounia Belaziz ◽  
Santiago V. Luis ◽  
Youssef Kandri Rodi ◽  
Inés Martí ◽  
Vicente Martí-Centelles

A functionalized benzimidazole, 1-(4-nitrobenzyl)-3-allyl-1H-benzo[d]imidazol-2(3H)-one, has been synthesized, and the crystal structure was determined and analyzed. This compound crystallizes in the monoclinic, space group P21/n (number 14)cwith cell parameters,a=7.12148(8) Å,b=16.12035(17) Å,c=13.04169(17) Å,β=93.3043(11),V=1494.71(3) Å3, andDcalc= 1.375 g/mm3. The solid state geometry is stabilized by intermolecularπ–πinteractions along with the van der Waals interactions which contribute to the stability of the crystal packing. Computational calculations have been used to properly understand the main intermolecular interactions present in the crystal.


2016 ◽  
Vol 31 (3) ◽  
pp. 229-232
Author(s):  
Berenice Torruco Baca ◽  
Luis Felipe del Castillo ◽  
Paula Vera-Cruz ◽  
Rubén A. Toscano ◽  
Joelis Rodríguez-Hernández ◽  
...  

Two different crystalline structures corresponding to a zinc adipate and a zinc succinate were determined combining: X-ray powder and single-crystal diffraction, infrared spectroscopy, thermal analysis, and true densities experiments. The zinc succinate crystal structure was determined by single-crystal X-ray diffraction. This compound crystallizes in the orthorhombic space-group Cccm with unit-cell parameters a = 4.792(1) Å, b = 21.204(6) Å, c = 6.691(2) Å, V = 679.8(3) Å3, and Z = 8. Zinc adipate crystal structure was refined from the laboratory X-ray powder diffraction data by the Rietveld method. It crystallizes in the monoclinic space group P2/c with unit-cell parameters, a = 16.2037(17)Å, b = 4.7810(2)Å, c = 9.2692(6)Å, β = 90.329(3)°, V = 718.07(9) Å3, and Z = 4. The thermal expansion of it was estimated in 5.40 × 10−5 K−1. This contribution is a step on the way to systematize the regularities in the coordination diversity between linear dicarboxylates and transition metal–inorganic buildings units of metal–organic frameworks.


2018 ◽  
Vol 74 (1) ◽  
pp. 69-74
Author(s):  
Renuka Devi Tammisetti ◽  
Ilya V. Kosilkin ◽  
Ilia A. Guzei ◽  
Victor N. Khrustalev ◽  
Larry Dalton ◽  
...  

The Z and E isomers of 3-[4-(dimethylamino)phenyl]-2-(2,4,6-tribromophenyl)acrylonitrile, C17H13Br3N2, (1), were obtained simultaneously by a Knoevenagel condensation between 4-(dimethylamino)benzaldehyde and 2-(2,4,6-tribromophenyl)acetonitrile, and were investigated by X-ray diffraction and density functional theory (DFT) quantum-chemical calculations. The (Z)-(1) isomer is monoclinic (space group P21/n, Z′ = 1), whereas the (E)-(1) isomer is triclinic (space group P\overline{1}, Z′ = 2). The two crystallographically-independent molecules of (E)-(1) adopt similar geometries. The corresponding bond lengths and angles in the two isomers of (1) are very similar. The difference in the calculated total energies of isolated molecules of (Z)-(1) and (E)-(1) with DFT-optimized geometries is ∼4.47 kJ mol−1, with the minimum value corresponding to the Z isomer. The crystal structure of (Z)-(1) reveals strong intermolecular nonvalent Br...N [3.100 (2) and 3.216 (3) Å] interactions which link the molecules into layers parallel to (10\overline{1}). In contrast, molecules of (E)-(1) in the crystal are bound to each other by strong nonvalent Br...Br [3.5556 (10) Å] and weak Br...N [3.433 (4) Å] interactions, forming chains propagating along [110]. The crystal packing of (Z)-(1) is denser than that of (E)-(1), implying that the crystal structure realized for (Z)-(1) is more stable than that for (E)-(1).


2017 ◽  
Vol 81 (4) ◽  
pp. 917-922
Author(s):  
Peter Elliott

AbstractThe crystal structure of the copper aluminium phosphate mineral sieleckiite, Cu3Al4(PO4)2 (OH)12·2H2O, from the Mt Oxide copper mine, Queensland, Australia was solved from single-crystal X-ray diffraction data utilizing synchrotron radiation. Sieleckiite has monoclinic rather than triclinic symmetry as previously reported and is space group C2/m with unit-cell parameters a = 11.711(2), b = 6.9233(14), c = 9.828(2) Å, β = 92.88(3)°, V = 795.8(3) Å3and Z = 2. The crystal structure, which has been refined to R1 = 0.0456 on the basis of 1186 unique reflections with Fo > 4σF, is a framework of corner-, edge- and face- sharing Cu and Al octahedra and PO4 tetrahedra.


2004 ◽  
Vol 68 (5) ◽  
pp. 757-767 ◽  
Author(s):  
T. Mihajlović ◽  
H. Effenberger

AbstractHydrothermal synthesis produced the new compound SrCo2(AsO4)(AsO3OH)(OH)(H2O). The compound belongs to the tsumcorite group (natural and synthetic compounds with the general formula M(1)M(2)2(XO4)2(H2O,OH)2; M(1)1+,2+,3+ = Na, K, Rb, Ag, NH4, Ca, Pb, Bi, Tl; M(2)2+,3+ = Al, Mn3+, Fe3+, Co, Ni, Cu, Zn; and X5+,6+ = P, As, V, S, Se, Mo). It represents (1) the first Sr member, (2) the until now unknown [7]-coordination for the M(1) position, (3) the first proof of (partially) protonated arsenate groups in this group of compounds, and (4) a new structure variant.The crystal structure of the title compound was determined using single-crystal X-ray diffraction data. The compound is monoclinic, space group P21/a, with a = 9.139(2), b = 12.829(3), c = 7.522(2) Å, β = 114.33(3)°, V = 803.6(3) Å3, Z = 4 [wR2 = 0.065 for 3530 unique reflections]. The hydrogen atoms were located experimentally.


Author(s):  
Gohil S. Thakur ◽  
Hans Reuter ◽  
Claudia Felser ◽  
Martin Jansen

The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.


Sign in / Sign up

Export Citation Format

Share Document