scholarly journals Multiobjective Optimization for Fixture Locating Layout of Sheet Metal Part Using SVR and NSGA-II

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Yuan Yang ◽  
Zhongqi Wang ◽  
Bo Yang ◽  
Zewang Jing ◽  
Yonggang Kang

Fixture plays a significant role in determining the sheet metal part (SMP) spatial position and restraining its excessive deformation in many manufacturing operations. However, it is still a difficult task to design and optimize SMP fixture locating layout at present because there exist multiple conflicting objectives and excessive computational cost of finite element analysis (FEA) during the optimization process. To this end, a new multiobjective optimization method for SMP fixture locating layout is proposed in this paper based on the support vector regression (SVR) surrogate model and the elitist nondominated sorting genetic algorithm (NSGA-II). By using ABAQUS™ Python script interface, a parametric FEA model is established. And the fixture locating layout is treated as design variables, while the overall deformation and maximum deformation of SMP under external forces are as the multiple objective functions. First, a limited number of training and testing samples are generated by combining Latin hypercube design (LHD) with FEA. Second, two SVR prediction models corresponding to the multiple objectives are established by learning from the limited training samples and are integrated as the multiobjective optimization surrogate model. Third, NSGA-II is applied to determine the Pareto optimal solutions of SMP fixture locating layout. Finally, a multiobjective optimization for fixture locating layout of an aircraft fuselage skin case is conducted to illustrate and verify the proposed method.

2013 ◽  
Vol 423-426 ◽  
pp. 737-740
Author(s):  
Zhong Yi Cai ◽  
Mi Wang ◽  
Chao Jie Che

A new stretch-forming process based on discretely loading for three-dimensional sheet metal part is proposed and numerically investigated. The gripping jaw in traditional stretch-forming process is replaced by the discrete array of loading units, and the stretching load is applied at discrete points on the two ends of sheet metal. By controlling the loading trajectory at the each discrete point, an optimal stretch-forming process can be realized. The numerical results on the new stretch-forming process of a saddle-shaped sheet metal part show that the distribution of the deformation on the formed surface of new process is more uniform than that of traditional stretch-forming, and the forming defects can be avoided and better forming quality will be obtained.


2020 ◽  
Vol 5 (3) ◽  
pp. 143-150
Author(s):  
Netsanet Ferede

In an optimization problem, different candidate solutions are compared with each other, and then the best or optimal solution is obtained which means that solution quality is fundamental. Topology optimization is used at the concept stage of design. It deals with the optimal distribution of material within the structure. Altair Inspire software is the industry's most powerful and easy-to-use Generative Design/Topology Optimization and rapid simulation solution for design engineers. In this paper Topology optimization is applied using Altair inspire to optimize the Sheet metal Angle bracket. Different results are conducted the better and final results are fulfilling the goal of the paper which is minimizing the mass of the sheet metal part by 65.9%  part and Maximizing the stiffness with Better Results of Von- Miss Stress Analysis,  Displacement, and comparison with different load cases.  This can lead to reduced costs, development time, material consumption, and product less weight.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 127329-127342
Author(s):  
Ruey-Kai Sheu ◽  
Yuan-Cheng Lin ◽  
Chin-Yin Huang ◽  
Lun-Chi Chen ◽  
Mayuresh Sunil Pardeshi ◽  
...  

2012 ◽  
Vol 212 (11) ◽  
pp. 2247-2254 ◽  
Author(s):  
Jun-Song Jin ◽  
Lei Deng ◽  
Xin-Yun Wang ◽  
Ju-Chen Xia

2014 ◽  
Vol 488-489 ◽  
pp. 79-82
Author(s):  
Bo Sun ◽  
Long Chen

The unfolding is the first step for the manufacturing of the sheet-metal part, which plays a major role for the accuracy and quality of the final product. Unfortunately, the inefficiency of the traditional drawing-based method made the process boring and sometime confusing. The CAD method made benefit for the designer. By means of the 3D modeling kernel and the mathematic model of unfolding process, the automatic design system of sheet-metal part was developed, in which the models are parametric and in 3D environment.


Author(s):  
Cao Yan ◽  
Du Jiang ◽  
Yang Lina ◽  
Yang Yanli ◽  
Bai Yu ◽  
...  

1974 ◽  
Vol 17 (112) ◽  
pp. 1240-1246 ◽  
Author(s):  
Hideo ISEKI ◽  
Takashi JIMMA ◽  
Tadao MUROTA

1977 ◽  
Vol 20 (141) ◽  
pp. 285-291 ◽  
Author(s):  
Hideo ISEKI ◽  
Tadao MUROTA ◽  
Takashi JIMMA

Sign in / Sign up

Export Citation Format

Share Document