scholarly journals Simulation of Pedestrian Crossing Behaviors at Unmarked Roadways Based on Social Force Model

2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Cao Ningbo ◽  
Wei Wei ◽  
Qu Zhaowei ◽  
Zhao Liying ◽  
Bai Qiaowen

Limited pedestrian microcosmic simulation models focus on the interactions between pedestrians and vehicles at unmarked roadways. Pedestrians tend to head to the destinations directly through the shortest path. So, pedestrians have inclined trajectories pointing destinations. Few simulation models have been established to describe the mechanisms underlying the inclined trajectories when pedestrians cross unmarked roadways. To overcome these shortcomings, achieve solutions for optimal design features before implementation, and help to make the design more rational, the paper establishes a modified social force model for interactions between pedestrians and vehicles at unmarked roadways. To achieve this goal, stop/go decision-making model based on gap acceptance theory and conflict avoidance models were developed to make social force model more appropriate in simulating pedestrian crossing behaviors at unmarked roadways. The extended model enables the understanding and judgment ability of pedestrians about the traffic environment and guides pedestrians to take the best behavior to avoid conflict and keep themselves safe. The comparison results of observed pedestrians’ trajectories and simulated pedestrians’ trajectories at one unmarked roadway indicate that the proposed model can be used to simulate pedestrian crossing behaviors at unmarked roadways effectively. The proposed model can be used to explore pedestrians’ trajectories variation at unmarked roadways and improve pedestrian safety facilities.

Author(s):  
Jiao Yao ◽  
Yuhang Li ◽  
Jiaping He

To enhance the safety of pedestrians crossing the street, a series of new regulations regarding pedestrian yield has been proposed and widely implemented across cities. In this study, we first made some improvements to the social force model, in which pedestrian crossing at the intersection, drivers’ psychology of giving way, vehicle yield to pedestrians, vehicle yield in different directions, the influence of pedestrians crossing boundaries, and signal lamp groups on pedestrian behavior were considered. Furthermore, pedestrian crossing and vehicle yield safety models were established, based on which the comprehensive safety evaluation model of intersections in arterials was established, in which two indices—(1) the safety degree of pedestrian crossings and (2) vehicle acceleration interference—were combined with the entropy weight method. Finally, four types of intersections in arterials were studied using a simulation: the intersections between different levels of arterials, and intersections with one-time and two-times pedestrian crossings. Moreover, safety evaluation and analysis of those intersections, considering the rule of pedestrian yield, were conducted combined with the trajectory data from the VISSIM simulation. The relevant results showed that for pedestrians crossing the street, the pedestrian safety of two-time crossing is significantly higher than that of one-time crossing, and compared with the arterial, the pedestrian crossing distance of the sub-arterial is shorter, and the pedestrian perception is safer. Moreover, due to the herd psychology effect, the increase in pedestrian flow volume improves the safety perception of pedestrians at the intersection.


2017 ◽  
Vol 2017 ◽  
pp. 1-21 ◽  
Author(s):  
Baocheng Ni ◽  
Zhen Li ◽  
Pei Zhang ◽  
Xiang Li

Passenger behavior and ship environment are the key factors affecting evacuation efficiency. However, current studies ignore the interior layout of passenger ship cabins and treat the cabins as empty rooms. To investigate the influence of obstacles (e.g., tables and stools) on cabin evacuation, we propose an agent-based social force model for advanced evacuation analysis of passenger ships; this model uses a goal-driven submodel to determine a plan and an extended social force submodel to govern the movement of passengers. The extended social force submodel considers the interaction forces between the passengers, crew, and obstacles and minimises the range of these forces to improve computational efficiency. We drew the following conclusions based on a series of evacuation simulations conducted in this study: (1) the proposed model endows the passenger with the behaviors of bypassing and crossing obstacles, (2) funnel-shaped exits from cabins can improve evacuation efficiency, and (3) as the exit angle increases, the evacuation time also increases. These findings offer ship designers some insight towards increasing the safety of large passenger ships.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Guofeng Ma ◽  
Yuqi Wang ◽  
Shan Jiang

Exits are essential to the efficiency of building evacuation due to its irreplaceable function, and the layout of multiple exits has always been the key concern for architectural design. To accurately evaluate the evacuation efficiency of different multiexit layouts and optimize the design rules, a dynamic exit decision model integrating an exit selection strategy and the social force model is developed to simulate the practical evacuation. And our proposed model outperforms the original social force model in terms of evacuation efficiency. Accordingly, different layouts are analyzed for evacuation in a single room with two exits. The analysis results reveal that evacuation time will be improved with the changes of exit locations and two parallel exits are validated as the most efficient layout among the three common categories. Affected by walking time and queuing time of evacuees, it is not conducive to evacuation whether the separation of two exits is too large or too small. Furthermore, an even symmetry is found more efficient than an asymmetric distribution of exits under some conditions. This work provides a basis for architectural designs of multiple exits and a foundation for further study of evacuation simulation.


2020 ◽  
Vol 121 ◽  
pp. 42-53 ◽  
Author(s):  
I.M. Sticco ◽  
G.A. Frank ◽  
F.E. Cornes ◽  
C.O. Dorso

2018 ◽  
Vol 34 ◽  
pp. 91-98 ◽  
Author(s):  
Charitha Dias ◽  
Hiroaki Nishiuchi ◽  
Satoshi Hyoudo ◽  
Tomoyuki Todoroki

2019 ◽  
pp. 477-486
Author(s):  
Yufei Yuan ◽  
Bernat Goñi-Ros ◽  
Tim P. van Oijen ◽  
Winnie Daamen ◽  
Serge P. Hoogendoorn

Sign in / Sign up

Export Citation Format

Share Document