scholarly journals Impaired Ability to Suppress Excitability of Antagonist Motoneurons at Onset of Dorsiflexion in Adults with Cerebral Palsy

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Svend Sparre Geertsen ◽  
Henrik Kirk ◽  
Jens Bo Nielsen

We recently showed that impaired gait function in adults with cerebral palsy (CP) is associated with reduced rate of force development in ankle dorsiflexors. Here, we explore potential mechanisms. We investigated the suppression of antagonist excitability, calculated as the amount of soleus H-reflex depression at the onset of ankle dorsiflexion compared to rest, in 24 adults with CP (34.3 years, range 18–57; GMFCS 1.95, range 1–3) and 15 healthy, age-matched controls. Furthermore, the central common drive to dorsiflexor motoneurons during a static contraction in the two groups was examined by coherence analyses. The H-reflex was significantly reduced by 37% at the onset of dorsiflexion compared to rest in healthy adults (P<0.001) but unchanged in adults with CP (P=0.91). Also, the adults with CP had significantly less coherence. These findings suggest that the ability to suppress antagonist motoneuronal excitability at movement onset is impaired and that the central common drive during static contractions is reduced in adults with CP.

2016 ◽  
Vol 30 (10) ◽  
pp. 2749-2760 ◽  
Author(s):  
Henrik Kirk ◽  
Svend S. Geertsen ◽  
Jakob Lorentzen ◽  
Kasper B. Krarup ◽  
Thomas Bandholm ◽  
...  

2013 ◽  
Vol 109 (3) ◽  
pp. 625-639 ◽  
Author(s):  
Tue Hvass Petersen ◽  
Simon F. Farmer ◽  
Mette Kliim-Due ◽  
Jens Bo Nielsen

Neurophysiological markers of the central control of gait in children with cerebral palsy (CP) are used to assess developmental response to therapy. We measured the central common drive to a leg muscle in children with CP. We recorded electromyograms (EMGs) from the tibialis anterior (TA) muscle of 40 children with hemiplegic CP and 42 typically developing age-matched controls during static dorsiflexion of the ankle and during the swing phase of treadmill walking. The common drive to TA motoneurons was identified through time- and frequency-domain cross-correlation methods. In control subjects, the common drive consists of frequencies between 1 and 60 Hz with peaks at beta (15–25 Hz) and gamma (30–45 Hz) frequencies known to be caused by activity within sensorimotor cortex networks: this drive to motoneurons strengthens during childhood. Similar to this drive in control subjects, this drive to the least affected TA in the CP children tended to strengthen with age, although compared with that in the control subjects, it was slightly weaker. For CP subjects of all ages, the most affected TA muscle common drive was markedly reduced compared with that of their least affected muscle as well as that of controls. These differences between the least and most affected TA muscles were unrelated to differences in the magnitude of EMG in the two muscles but positively correlated with ankle dorsiflexion velocity and joint angle during gait. Time- and frequency-domain analysis of ongoing EMG recruited during behaviorally relevant lower limb tasks provides a noninvasive and important measure of the central drive to motoneurons in subjects with CP.


Author(s):  
O. Kolosova

The purpose of our work was to investigate in detail the influence of pair stimulation of tibial nerve (n.tibialis) on human soleus H-reflex amplitude at rest and after long-lasting voluntary contraction of calf muscle (m.m. gastrocnemius-soleus), which caused the fatigue of soleus muscle. The method of H-reflex of soleus muscle was used. Test and conditioned responses (by pair stimulation of n. tibialis) were registered. Homosynaptic postactivation depression led to inhibition of H-reflex at rest. After fatiguing voluntary static contraction the amplitudes of test and conditioned soleus H-reflex were significantly reduced. Then both H-reflex amplitudes subsequently recovered. Soleus H-reflex inhibition might be due to the activation of the groups III and IV afferent nerves under the influence of mechanical and metabolic changes in the muscle.


2018 ◽  
Vol 100 (1) ◽  
pp. e6 ◽  
Author(s):  
H. Kerr Graham ◽  
Pam Thomason ◽  
Morgan Sangeux
Keyword(s):  

Children ◽  
2020 ◽  
Vol 7 (9) ◽  
pp. 142
Author(s):  
Pong Sub Youn ◽  
Kyun Hee Cho ◽  
Shin Jun Park

The aim of this study was to investigate the effect of ankle joint mobilization in children with cerebral palsy (CP) to ankle range of motion (ROM), gait, and standing balance. We recruited 32 children (spastic diplegia) diagnosed with CP and categorized them in two groups: the ankle joint mobilization (n = 16) group and sham joint mobilization (n = 16) group. Thus, following a six-week ankle joint mobilization, we examined measures such as passive ROM in ankle dorsiflexion in the sitting and supine position, center of pressure (COP) displacements (sway length, area) with eyes open (EO) and closed (EC), and a gait function test (timed up and go test (TUG) and 10-m walk test). The dorsiflexion ROM, TUG, and 10-m walk test significantly increased in the mobilization group compared to the control group. Ankle joint mobilization can be regarded as a promising method to increase dorsiflexion and improve gait in CP-suffering children.


2017 ◽  
Vol 57 ◽  
pp. 102-103 ◽  
Author(s):  
Lorenzo Pitto ◽  
Antoine Falisse ◽  
Tessa Hoekstra ◽  
Hans Kainz ◽  
Mariska Wesseling ◽  
...  

Brain ◽  
2008 ◽  
Vol 132 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Maike Hodapp ◽  
Julia Vry ◽  
Volker Mall ◽  
Michael Faist

1994 ◽  
Vol 81 (SUPPLEMENT) ◽  
pp. A228
Author(s):  
S. G. Soriano ◽  
E. L. Logigian ◽  
P. A. Prahl ◽  
J. R. Madsen ◽  
R. M. Scott

Sign in / Sign up

Export Citation Format

Share Document