scholarly journals Effects of opposite directional resistive static contraction of the muscles around the scapulae on the unexercised contralateral soleus H-reflex

2018 ◽  
Vol 61 ◽  
pp. e352
Author(s):  
N. Ide ◽  
T. Shiratani ◽  
R. Hobara ◽  
M. Arai
Keyword(s):  
H Reflex ◽  
Author(s):  
O. Kolosova

The purpose of our work was to investigate in detail the influence of pair stimulation of tibial nerve (n.tibialis) on human soleus H-reflex amplitude at rest and after long-lasting voluntary contraction of calf muscle (m.m. gastrocnemius-soleus), which caused the fatigue of soleus muscle. The method of H-reflex of soleus muscle was used. Test and conditioned responses (by pair stimulation of n. tibialis) were registered. Homosynaptic postactivation depression led to inhibition of H-reflex at rest. After fatiguing voluntary static contraction the amplitudes of test and conditioned soleus H-reflex were significantly reduced. Then both H-reflex amplitudes subsequently recovered. Soleus H-reflex inhibition might be due to the activation of the groups III and IV afferent nerves under the influence of mechanical and metabolic changes in the muscle.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Svend Sparre Geertsen ◽  
Henrik Kirk ◽  
Jens Bo Nielsen

We recently showed that impaired gait function in adults with cerebral palsy (CP) is associated with reduced rate of force development in ankle dorsiflexors. Here, we explore potential mechanisms. We investigated the suppression of antagonist excitability, calculated as the amount of soleus H-reflex depression at the onset of ankle dorsiflexion compared to rest, in 24 adults with CP (34.3 years, range 18–57; GMFCS 1.95, range 1–3) and 15 healthy, age-matched controls. Furthermore, the central common drive to dorsiflexor motoneurons during a static contraction in the two groups was examined by coherence analyses. The H-reflex was significantly reduced by 37% at the onset of dorsiflexion compared to rest in healthy adults (P<0.001) but unchanged in adults with CP (P=0.91). Also, the adults with CP had significantly less coherence. These findings suggest that the ability to suppress antagonist motoneuronal excitability at movement onset is impaired and that the central common drive during static contractions is reduced in adults with CP.


2003 ◽  
Vol 89 (1) ◽  
pp. 12-21 ◽  
Author(s):  
E. Paul Zehr ◽  
David F. Collins ◽  
Alain Frigon ◽  
Nienke Hoogenboom

Although we move our arms rhythmically during walking, running, and swimming, we know little about the neural control of such movements. Our working hypothesis is that neural mechanisms controlling rhythmic movements are similar in the human lumbar and cervical spinal cord. Thus reflex modulation during rhythmic arm movement should be similar to that seen during leg movement. Our main experimental hypotheses were that the amplitude of H-reflexes in the forearm muscles would be modulated during arm movement (i.e., phase-dependent) and would be inhibited during cycling compared with static contraction (i.e., task-dependent). Furthermore, to determine the locus of any modulation, we tested the effect that active and passive movement of the ipsilateral (relative to stimulated arm) and contralateral arm had on H-reflex amplitude. Subjects performed rhythmic arm cycling on a custom-made hydraulic ergometer in which the two arms could be constrained to move together (180° out of phase) or could rotate independently. Position of the stimulated limb in the movement cycle is described with respect to the clock face. H-reflexes were evoked at 12, 3, 6, and 9 o'clock positions during static contraction as well as during rhythmic arm movements. Reflex amplitudes were compared between tasks at equal M wave amplitudes and similar levels of electromyographic (EMG) activity in the target muscle. Surface EMG recordings were obtained bilaterally from flexor carpi radialis as well as from other muscles controlling the wrist, elbow, and shoulder. Compared with reflexes evoked during static contractions, movement of the stimulated limb attenuated H-reflexes by 50.8% ( P < 0.005), 65.3% ( P < 0.001), and 52.6% ( P < 0.001) for bilateral, active ipsilateral, and passive ipsilateral movements, respectively. In contrast, movement of the contralateral limb did not significantly alter H-reflex amplitude. H-reflexes were also modulated by limb position ( P < 0.005). Thus task- and phase-dependent modulation were observed in the arm as previously demonstrated in the leg. The data support the hypothesis that neural mechanisms regulating reflex pathways in the moving limb are similar in the human upper and lower limbs. However, the inhibition of H-reflex amplitude induced by contralateral leg movement is absent in the arms. This may reflect the greater extent to which the arms can be used independently.


1982 ◽  
Vol 78 (4) ◽  
pp. 342-345 ◽  
Author(s):  
John Metz ◽  
Henry H. Holcomb ◽  
Herbert Y. Meltzer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dorian Glories ◽  
Mathias Soulhol ◽  
David Amarantini ◽  
Julien Duclay

AbstractDuring voluntary contractions, corticomuscular coherence (CMC) is thought to reflect a mutual interaction between cortical and muscle oscillatory activities, respectively measured by electroencephalography (EEG) and electromyography (EMG). However, it remains unclear whether CMC modulation would depend on the contribution of neural mechanisms acting at the spinal level. To this purpose, modulations of CMC were compared during submaximal isometric, shortening and lengthening contractions of the soleus (SOL) and the medial gastrocnemius (MG) with a concurrent analysis of changes in spinal excitability that may be reduced during lengthening contractions. Submaximal contractions intensity was set at 50% of the maximal SOL EMG activity. CMC was computed in the time–frequency domain between the Cz EEG electrode signal and the unrectified SOL or MG EMG signal. Spinal excitability was quantified through normalized Hoffmann (H) reflex amplitude. The results indicate that beta-band CMC and normalized H-reflex were significantly lower in SOL during lengthening compared with isometric contractions, but were similar in MG for all three muscle contraction types. Collectively, these results highlight an effect of contraction type on beta-band CMC, although it may differ between agonist synergist muscles. These novel findings also provide new evidence that beta-band CMC modulation may involve spinal regulatory mechanisms.


Author(s):  
Yung-Sheng Chen ◽  
Shi Zhou ◽  
Zachary J. Crowley-McHattan ◽  
Pedro Bezerra ◽  
Wei-Chin Tseng ◽  
...  

This study examined the acute effects of stretch tensions of kinesiology taping (KT) on the soleus (SOL), medial (MG), and lateral (LG) gastrocnemius Hoffmann-reflex (H-reflex) modulation in physically active healthy adults. A cross-over within-subject design was used in this study. Twelve physically active collegiate students voluntarily participated in the study (age = 21.3 ± 1.2 years; height = 175.6 ± 7.1 cm; body weight = 69.9 ± 7.1 kg). A standard Y-shape of KT technique was applied to the calf muscles. The KT was controlled in three tension intensities in a randomised order: paper-off, 50%, and 100% of maximal stretch tension of the tape. The peak-to-peak amplitude of maximal M-wave (Mmax) and H-reflex (Hmax) responses in the SOL, MG, and LG muscles were assessed before taping (pre-taping), taping, and after taping (post-taping) phases in the lying prone position. The results demonstrated significantly larger LG Hmax responses in the pre-taping condition than those in the post-taping condition during paper-off KT (p = 0.002). Moreover, the ΔHmax/Mmax of pre- and post-taping in the SOL muscle was significantly larger during 50%KT tension than that of paper-off (p = 0.046). In conclusion, the stretch tension of KT contributes minor influence on the spinal motoneuron excitability in the triceps surae during rest.


Sign in / Sign up

Export Citation Format

Share Document