scholarly journals Numerical Study of Random Periodic Lipschitz Shadowing of Stochastic Differential Equations

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Qingyi Zhan ◽  
Xiangdong Xie

This paper is devoted to a new numerical approach for the possibility of(ω,Lδ)-periodic Lipschitz shadowing of a class of stochastic differential equations. The existence of(ω,Lδ)-periodic Lipschitz shadowing orbits and expression of shadowing distance are established. The numerical implementation approaches to the shadowing distance by the random Romberg algorithm are presented, and the convergence of this method is also proved to be mean-square. This ensures the feasibility of the numerical method. The practical use of these theorems and the associated algorithms is demonstrated in the numerical computations of the(ω,Lδ)-periodic Lipschitz shadowing orbits of the stochastic logistic equation.

2003 ◽  
Vol 6 ◽  
pp. 297-313 ◽  
Author(s):  
Desmond J. Higham ◽  
Xuerong Mao ◽  
Andrew M. Stuart

AbstractPositive results are proved here about the ability of numerical simulations to reproduce the exponential mean-square stability of stochastic differential equations (SDEs). The first set of results applies under finite-time convergence conditions on the numerical method. Under these conditions, the exponential mean-square stability of the SDE and that of the method (for sufficiently small step sizes) are shown to be equivalent, and the corresponding second-moment Lyapunov exponent bounds can be taken to be arbitrarily close. The required finite-time convergence conditions hold for the class of stochastic theta methods on globally Lipschitz problems. It is then shown that exponential mean-square stability for non-globally Lipschitz SDEs is not inherited, in general, by numerical methods. However, for a class of SDEs that satisfy a one-sided Lipschitz condition, positive results are obtained for two implicit methods. These results highlight the fact that for long-time simulation on nonlinear SDEs, the choice of numerical method can be crucial.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Ying Du ◽  
Changlin Mei

Stochastic differential equations with jumps are of a wide application area especially in mathematical finance. In general, it is hard to obtain their analytical solutions and the construction of some numerical solutions with good performance is therefore an important task in practice. In this study, a compensated split-stepθmethod is proposed to numerically solve the stochastic differential equations with variable delays and random jump magnitudes. It is proved that the numerical solutions converge to the analytical solutions in mean-square with the approximate rate of 1/2. Furthermore, the mean-square stability of the exact solutions and the numerical solutions are investigated via a linear test equation and the results show that the proposed numerical method shares both the mean-square stability and the so-called A-stability.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 973
Author(s):  
Giuseppe Gaeta

We apply the recently developed theory of symmetry of stochastic differential equations to stochastic versions of the logistic equation; these may have environmental or demographical noise, or both—in which case we speak of the complete model. We study all these cases, both with constant and with non-constant noise amplitude, and show that the only one in which there are nontrivial symmetries is that of the stochastic logistic equation with (constant amplitude) environmental noise. In this case, the general theory of symmetry of stochastic differential equations is used to obtain an explicit integration, i.e., an explicit formula for the process in terms of any single realization of the driving Wiener process.


2016 ◽  
Vol 8 (6) ◽  
pp. 1004-1022 ◽  
Author(s):  
Xu Yang ◽  
Weidong Zhao

AbstractIn this paper, we investigate the mean-square convergence of the split-step θ-scheme for nonlinear stochastic differential equations with jumps. Under some standard assumptions, we rigorously prove that the strong rate of convergence of the split-step θ-scheme in strong sense is one half. Some numerical experiments are carried out to assert our theoretical result.


Sign in / Sign up

Export Citation Format

Share Document