scholarly journals Stability and Hopf Bifurcation Analysis of a Fractional-Order Epidemic Model with Time Delay

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Zhen Wang ◽  
Xinhe Wang

A fractional-order epidemic model with time delay is considered. Firstly, stability of the disease-free equilibrium point and endemic equilibrium point is studied. Then, by choosing the time delay as a bifurcation parameter, the existence of Hopf bifurcation is studied. Finally, numerical simulations are given to illustrate the effectiveness and feasibility of theoretical results.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rui Zhang ◽  
Jinbin Wang ◽  
Lifeng Ma

This work is focused on a rolling mill’s main drive electromechanical coupling system. Firstly, we equip electromechanical coupling system with fractional-order time delay. Secondly, we, respectively, derive the conditions for occurrence of Hopf bifurcation around equilibriums E 0 0 , 0 , 0 , 0 and E 1 x 1 ∗ , 0 , x 3 ∗ , 0 . It is found that the fractional order α and time delay τ in the system play an important role on the system stability. Finally, numerical simulations are given to verify the analytic results.


2012 ◽  
Vol 594-597 ◽  
pp. 2693-2696
Author(s):  
Chang Jin Xu

In this paper, a Lotka-Volterra model with time delay is considered. The stability of the equilibrium of the model is investigated and the existence of Hopf bifurcation is proved. Numerical simulations are performed to justify the theoretical results. Finally, main conclusions are included.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Fangfang Yang ◽  
Zizhen Zhang

AbstractIn this manuscript, we investigate a novel Susceptible–Exposed–Infected–Quarantined–Recovered (SEIQR) COVID-19 propagation model with two delays, and we also consider supply chain transmission and hierarchical quarantine rate in this model. Firstly, we analyze the existence of an equilibrium, including a virus-free equilibrium and a virus-existence equilibrium. Then local stability and the occurrence of Hopf bifurcation have been researched by thinking of time delay as the bifurcation parameter. Besides, we calculate direction and stability of the Hopf bifurcation. Finally, we carry out some numerical simulations to prove the validity of theoretical results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Ding Fang ◽  
Yongxin Zhang ◽  
Wendi Wang

An SIS propagation model with the nonlinear rewiring rate on an adaptive network is considered. It is found by bifurcation analysis that the model has the complex behaviors which include the transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation, and Bogdanov–Takens bifurcation. Especially, a bifurcation curve with “S” shape emerges due to the nonlinear rewiring rate, which leads to multiple equilibria and twice saddle-node bifurcations. Numerical simulations show that the model admits a homoclinic bifurcation and a saddle-node bifurcation of the limit cycle.


2018 ◽  
Vol 11 (07) ◽  
pp. 1850091 ◽  
Author(s):  
Yong Li ◽  
Xianning Liu ◽  
Lianwen Wang ◽  
Xingan Zhang

An [Formula: see text] epidemic model incorporating incubation time delay and novel nonlinear incidence is proposed and analyzed to seek for the control strategies of scarlet fever, where the contact rate which can reflect the regular behavior and habit changes of children is non-monotonic with respect to the number of susceptible. The model without delay may exhibit backward bifurcation and bistable states even though the basic reproduction number is less than unit. Furthermore, we derive the conditions for occurrence of Hopf bifurcation when the time delay is considered as a bifurcation parameter. The data of scarlet fever of China are simulated to verify our theoretical results. In the end, several effective preventive and intervention measures of scarlet fever are found out.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao ◽  
Jinde Cao

The local reaction-diffusion Lengyel-Epstein system with delay is investigated. By choosingτas bifurcating parameter, we show that Hopf bifurcations occur when time delay crosses a critical value. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical simulations are performed to support the analytical results and the chaotic behaviors are observed.


2012 ◽  
Vol 155-156 ◽  
pp. 23-26
Author(s):  
Jun Hong Li ◽  
Ning Cui ◽  
Liang Cui ◽  
Cai Juan Li

In this paper, we study the global dynamics of an SIRS epidemic model with nonlinear inci- dence rate. By means of Dulac function and Poincare-Bendixson Theorem, we proved the global asy- mptotical stable results of the disease-free equilibrium. It is then obtained the model undergoes Hopf bifurcation and existence of one limit cycle. Some numerical simulations are given to illustrate the an- alytical results.


2021 ◽  
Author(s):  
Lan Meng ◽  
Wei Zhu

Abstract In this paper, an n-patch SEIR epidemic model for the coronavirus disease 2019 (COVID-19) is presented. It is shown that there is unique disease-free equilibrium for this model. Then, the dynamic behavior is studied by the basic reproduction number. Some numerical simulations with three patches are given to validate the effectiveness of the theoretical results. The influence of quarantined rate and population migration rate on the basic reproduction number is also discussed by simulation.


2008 ◽  
Vol 18 (01) ◽  
pp. 275-283 ◽  
Author(s):  
MIHAELA NEAMŢU ◽  
RAUL FLORIN HORHAT ◽  
DUMITRU OPRIŞ

In this paper we analyze a simple mathematical model which describes the interaction between proteins P53 and Mdm2. For the stationary state we discuss the local stability and the existence of a Hopf bifurcation. We study the direction and stability of the bifurcating periodic solutions by choosing the delay as a bifurcation parameter. Finally, we will offer some numerical simulations and present our conclusions.


Sign in / Sign up

Export Citation Format

Share Document