Bifurcation Analysis in a Lotka-Volterra Model with Delay

2012 ◽  
Vol 594-597 ◽  
pp. 2693-2696
Author(s):  
Chang Jin Xu

In this paper, a Lotka-Volterra model with time delay is considered. The stability of the equilibrium of the model is investigated and the existence of Hopf bifurcation is proved. Numerical simulations are performed to justify the theoretical results. Finally, main conclusions are included.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao ◽  
Jinde Cao

The local reaction-diffusion Lengyel-Epstein system with delay is investigated. By choosingτas bifurcating parameter, we show that Hopf bifurcations occur when time delay crosses a critical value. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical simulations are performed to support the analytical results and the chaotic behaviors are observed.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Zhen Wang ◽  
Xinhe Wang

A fractional-order epidemic model with time delay is considered. Firstly, stability of the disease-free equilibrium point and endemic equilibrium point is studied. Then, by choosing the time delay as a bifurcation parameter, the existence of Hopf bifurcation is studied. Finally, numerical simulations are given to illustrate the effectiveness and feasibility of theoretical results.


2007 ◽  
Vol 17 (04) ◽  
pp. 1367-1374 ◽  
Author(s):  
QIAN GUO ◽  
CHANGPIN LI

In this paper, we study Hopf bifurcation of a second-order nonlinear differential equation with time delay by using the Lyapunov–Schmidt reduction. The approximate analytical expressions of the periodic solutions bifurcated from the trivial solution are given. We also discuss the stability of these periodic solutions. The numerical simulations line up with the theoretical results.


2016 ◽  
Vol 21 (2) ◽  
pp. 143-158
Author(s):  
Jia Liu ◽  
Qunying Zhang ◽  
Canrong Tian

This paper is concerned with the dynamics of a viral infection model with diffusion under the assumption that the immune response is retarded. A time delay is incorporated into the model described the delayed immune response after viral infection. Based upon a stability analysis, we demonstrate that the appearance, or the absence, of spatial patterns is determined by the delay under some conditions. Moreover, the spatial patterns occurs as a consequence of Hopf bifurcation. By applying the normal form and the center manifold theory, the direction as well as the stability of the Hopf bifurcation is explored. In addition, a series of numerical simulations are performed to illustrate our theoretical results.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Lingling Li ◽  
Jianwei Shen

We focused on the gene regulative network involving Rb-E2F pathway and microRNAs (miR449) and studied the influence of time delay on the dynamical behaviors of Rb-E2F pathway by using Hopf bifurcation theory. It is shown that under certain assumptions the steady state of the delay model is asymptotically stable for all delay values; there is a critical value under another set of conditions; the steady state is stable when the time delay is less than the critical value, while the steady state is changed to be unstable when the time delay is greater than the critical value. Thus, Hopf bifurcation appears at the steady state when the delay passes through the critical value. Numerical simulations were presented to illustrate the theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rui Zhang ◽  
Jinbin Wang ◽  
Lifeng Ma

This work is focused on a rolling mill’s main drive electromechanical coupling system. Firstly, we equip electromechanical coupling system with fractional-order time delay. Secondly, we, respectively, derive the conditions for occurrence of Hopf bifurcation around equilibriums E 0 0 , 0 , 0 , 0 and E 1 x 1 ∗ , 0 , x 3 ∗ , 0 . It is found that the fractional order α and time delay τ in the system play an important role on the system stability. Finally, numerical simulations are given to verify the analytic results.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Wenjun Hu ◽  
Haiyan Tian ◽  
Gang Zhang

Evolutionary game dynamics is an important research, which is widely used in many fields such as social networks, biological systems, and cooperative behaviors. This paper focuses on the Hopf bifurcation in imitative dynamics of three strategies (Rock-Paper-Scissors) with mutations. First, we verify that there is a Hopf bifurcation in the imitative dynamics with no mutation. Then, we find that there is a critical value of mutation such that the system tends to an unstable limit cycle created in a subcritical Hopf bifurcation. Moreover, the Hopf bifurcation exists for other kinds of the considered mutation patterns. Finally, the theoretical results are verified by numerical simulations through Rock-Paper-Scissors game.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Chunming Zhang ◽  
Wanping Liu ◽  
Jing Xiao ◽  
Yun Zhao

A model applicable to describe the propagation of computer virus is developed and studied, along with the latent time incorporated. We regard time delay as a bifurcating parameter to study the dynamical behaviors including local asymptotical stability and local Hopf bifurcation. By analyzing the associated characteristic equation, Hopf bifurcation occurs when the time delay passes through a sequence of critical values. A formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions is given by using the normal form method and center manifold theorem. Finally, illustrative examples are given to support the theoretical results.


2012 ◽  
Vol 204-208 ◽  
pp. 4586-4589
Author(s):  
Chang Jin Xu ◽  
Pei Luan Li ◽  
Ling Yun Yao

In this paper, the dynamics of a van der pol model with delay are considered. It is shown that the asymptotic behavior depends crucially on the time delay parameter. By regarded the delay as a bifurcation parameter, we are particularly interested in the study of the Hopf bifurcation problem. The length of delay which preserves the stability of the equilibrium is calculated. Some numerical simulations for justifying the analytical findings are included.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yue Zhang ◽  
Xue Li ◽  
Xianghua Zhang ◽  
Guisheng Yin

Epidemic models are normally used to describe the spread of infectious diseases. In this paper, we will discuss an epidemic model with time delay. Firstly, the existence of the positive fixed point is proven; and then, the stability and Hopf bifurcation are investigated by analyzing the distribution of the roots of the associated characteristic equations. Thirdly, the theory of normal form and manifold is used to drive an explicit algorithm for determining the direction of Hopf bifurcation and the stability of the bifurcation periodic solutions. Finally, some simulation results are carried out to validate our theoretic analysis.


Sign in / Sign up

Export Citation Format

Share Document