scholarly journals A Rolling Bearing Fault Diagnosis-Optimized Scale-Space Representation for the Empirical Wavelet Transform

2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Zechao Liu ◽  
Jianming Ding ◽  
Jianhui Lin ◽  
Yan Huang

Rolling element bearings have been widely used in mechanical systems, such as electric motors, generators, pumps, gearboxes, railway axles, and turbines, etc. Therefore, the detection of rolling bearing faults has been a hot research topic in engineering practices. Envelope demodulation represents a fundamental method for extracting effective fault information from measured vibration signals. However, the performance of envelope demodulation depends heavily on the selection of the filter band and central frequencies. The empirical wavelet transform (EWT), a new signal decomposition method, provides a framework for arbitrarily segmenting the Fourier spectrum of an analysed signal. Scale-space representation (SSR) can adaptively detect the boundaries of the EWT; however, it has two shortcomings: slow calculation speeds and invalid boundary detection results. Accordingly, an EWT method based on optimized scale-space representation (OSSR), namely, the EWTOSSR, is proposed. The effectiveness of the EWTOSSR is verified by comparisons between the simulation and the experimental signals. The results show that the EWTOSSR can automatically and effectively segment the EWT spectrum to extract fault information. Compared with three well-known methods (the traditional EWT, ensemble empirical mode decomposition (EEMD), and the fast kurtogram), the EWTOSSR exhibits a much better fault detection performance.

2020 ◽  
Author(s):  
Siqi Huang ◽  
Jinde Zheng ◽  
Haiyang Pan ◽  
Jinyu Tong

Abstract Inspired by the empirical wavelet transform (EWT) method, a new method for nonstationary signal analysis termed order-statistic filtering Fourier decomposition (OSFFD) is proposed in this paper. The OSFFD method uses order-statistic filtering and smoothing to preprocesses the Fourier spectrum of original signal, which improves the problem of sometimes unreasonable boundaries obtained by EWT directly segmenting the Fourier spectrum. Then, the mono-components with physical significance are obtained by adaptively reconstructing the coefficient of fast Fourier transform in each interval, which improves the problem of too many false components obtained by Fourier decomposition (FDM). The OSFFD method also is compared with the existing nonstationary signal decomposition methods including empirical mode decomposition(EMD), EWT, FDM and variational mode decomposition(VMD) through analyzing simulation signals and the result indicates that OSFFD is less affected by noise and is much more accurate and reasonable in obtaining mono-components. After that, the OSFFD method is compared with the mentioned methods in diagnostic accuracy through analyzing the tested faulty bearing vibration signals and the effectiveness and superiority of OSFFD to the comparative methods in bearing fault identification are verified.


2019 ◽  
Vol 25 (6) ◽  
pp. 1263-1278 ◽  
Author(s):  
Wei Teng ◽  
Wei Wang ◽  
Haixing Ma ◽  
Yibing Liu ◽  
Zhiyong Ma ◽  
...  

Wind turbines revolve in difficult operating conditions due to stochastic loads and produce massive vibration signals, which cause obstacles in detecting potential fault information. To overcome this, an adaptive fault detection approach is presented in this paper on the basis of parameterless empirical wavelet transform (PEWT) and the margin factor. PEWT can decompose the vibration signal into a series of empirical modes (EMs) through splitting its Fourier spectrum, using the scale space method and adaptively constructing an orthogonal wavelet filter bank. The margin factor is utilized as a key metric for automatically selecting the EM which is sensitive to the potential faults. The method presented in this paper will improve the efficiency and accuracy of fault information for the condition monitoring of wind turbines.


2014 ◽  
Vol 6 ◽  
pp. 803919 ◽  
Author(s):  
Jianzhong Zhou ◽  
Jian Xiao ◽  
Han Xiao ◽  
Weibo Zhang ◽  
Wenlong Zhu ◽  
...  

This paper presented a novel procedure based on the ensemble empirical mode decomposition and extreme learning machine. Firstly, EEMD was utilized to decompose the vibration signals into a number of IMFs adaptively and the permutation entropy of each IMF was calculated to generate the fault feature matrix. Secondly, a new extreme learning machine was proposed by combining ensemble extreme learning machine and the evolutionary extreme learning machine which used an artificial bee colony algorithm to optimize the input weights and hidden bias. The proposed diagnosis algorithm was applied on the three rolling bearing fault diagnosis experiments. The numerical experimental results demonstrated that the proposed method had an improved generalization performance than traditional extreme and other variants.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4280 ◽  
Author(s):  
Xia ◽  
Zhou

This paper proposes a methodology to process and interpret the complex signals acquired from the health monitoring of civil structures via scale-space empirical wavelet transform (EWT). The FREEVIB method, a widely used instantaneous modal parameters identification method, determines the structural characteristics from the individual components separated by EWT first. The scale-space EWT turns the detecting of the frequency boundaries into the scale-space representation of the Fourier spectrum. As well, to find meaningful modes becomes a clustering problem on the length of minima scale-space curves. The Otsu’s algorithm is employed to determine the threshold for the clustering analysis. To retain the time-varying features, the EWT-extracted mono-components are analyzed by the FREEVIB method to obtain the instantaneous modal parameters and the linearity characteristics of the structures. Both simulated and real SHM signals from civil structures are used to validate the effectiveness of the present method. The results demonstrate that the proposed methodology is capable of separating the signal components, even those closely spaced ones in frequency domain, with high accuracy, and extracting the structural features reliably.


2013 ◽  
Vol 300-301 ◽  
pp. 344-350 ◽  
Author(s):  
Zhou Wan ◽  
Xing Zhi Liao ◽  
Xin Xiong ◽  
Jin Chuan Han

For empirical mode decomposition (EMD) of Hilbert-Huang transform (HHT) exists the problem of mode mixing. An analysis method based on ensemble empirical mode decomposition (EEMD) is proposed to apply to fault diagnosis of rolling bearing. This paper puts forward, after signal pretreatment, applying EEMD method to acquire the intrinsic mode function (IMF) of fault signal. Then according to correlation coefficient for IMFs and the signal before decomposing by EEMD method, some redundant low frequency IMFs produced in the process of decomposition can be eliminated, then the effective IMF components are selected to perform a local Hilbert marginal spectrum analysis, then fault characteristics are extracted. Through the vibration analysis of inner-race fault bearing it shows that this method can be effectively applied to extract fault characteristics of rolling bearing.


Sign in / Sign up

Export Citation Format

Share Document