scholarly journals Hysteretic Behavior of Eccentrically Loaded Reinforced Air-Entrained Concrete Columns under Combined Effects of Freeze-Thaw Cycles and Seawater Corrosion

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Jieqiong Wu ◽  
Jian Zhang ◽  
Bo Diao ◽  
Shaohong Cheng ◽  
Yinghua Ye

Besides service loads, reinforced concrete structures in cold coastal seismic regions are subjected to multiple attacks of freeze-thaw cycles and seawater corrosion as well as the earthquake struck. An experimental study was conducted to investigate the seismic response of eccentrically loaded reinforced air-entrained concrete columns under alternative actions of freeze-thaw cycles and chloride corrosion. Results show that, after 300 times of freeze-thaw cycles alternated with 100 times of seawater immersion, the hysteretic behavior of the eccentrically loaded columns manifested an apparent asymmetric pattern. Under forward cyclic load, the existence of larger eccentric load rendered the reduction of the ultimate load and the ductility of a column by up to 20.3% and 46.05%, respectively, but it had a positive effect if reverse cyclic load was applied. The presence of eccentric load could have a considerable impact on the seismic behavior of reinforced air-entrained concrete columns served in an aggressive environment.

2018 ◽  
Vol 12 (1) ◽  
pp. 47-61
Author(s):  
Wenjuan Lv ◽  
Baodong Liu ◽  
Ming Li ◽  
Lin Li ◽  
Pengyuan Zhang

Background: For reinforced concrete structures under different humid conditions, the mechanical properties of concrete are significantly affected by the moisture content, which may result in a great change of the functional performance and bearing capacity. Objective: This paper presents an experiment to investigate the influence of the moisture content on the dynamic characteristics and hysteretic behavior of reinforced concrete column. Results: The results show that the natural frequency of reinforced concrete columns increases quickly at an early stage of immersion, but there is little change when the columns are close to saturation; the difference between the natural frequencies before and after cyclic test grows as the moisture content rises. The damping ratio slightly decreases first and then increases with the increase of moisture content; the damping ratio after the cyclic test is larger than before the test due to the development of the micro-cracks. Conclusion: The trend of energy dissipation is on the rise with increasing moisture content, although at an early stage, it decreases slightly. According to the experimental result, a formula for the moisture content on the average energy dissipation of reinforced concrete columns is proposed.


2011 ◽  
Vol 22 (2) ◽  
pp. 191-200 ◽  
Author(s):  
Huigang Xiao ◽  
Hui Li ◽  
Jinping Ou

Cement-based strain sensors (CBCC sensor) were fabricated by taking the advantage of piezoresistivity of CB-filled CBCC. CBCC sensors were centrally embedded into concrete columns (made with C40 and C80 concretes, respectively) to monitor the strain of the columns under cyclic load and monotonic load by measuring the resistance of CBCC sensors. The comparison between the monitored results of CBCC sensors and that of traditional displacement transducers indicates that CBCC sensors have good strain-sensing abilities. Meanwhile, CBCC sensors exhibit different failure modes that break later than C40 concrete columns, but a little earlier than C80 concrete columns. Therefore, the strength-matching principle between embedded CBCC sensors and concrete columns is proposed in this article to guarantee the sensing capacity of CBCC sensors in various concrete structures. The analytical results agree well with the experimental phenomena.


2020 ◽  
Vol 23 (10) ◽  
pp. 2018-2029
Author(s):  
Hongbing Li ◽  
Fangbo Wu ◽  
Liangtao Bu ◽  
Yong Liu ◽  
Jiang Yao

In this study, the mechanical properties and failure characteristics of steel reactive powder concrete columns with different strength grades were investigated through compression testing. Six steel reactive powder concrete columns were tested; three columns underwent axial compression testing and three columns underwent eccentric compression testing. The results of the axial compression testing showed that steel and reactive powder concrete could work cooperatively at the initial stage, and the final column failure mode was primarily splitting failure at the end of the column, with the formation of a main crack in the longitudinal direction extending to the middle of the column. The results of the eccentric compression testing showed that the eccentrically loaded steel reactive powder concrete columns had comparatively strong deformability. The columns presented ductile failure mode under the eccentric load with 0.2 eccentricity. The final failure of the column involved a sudden increase in the horizontal crack width on the tension side, the steel flange on the tension side reached the yield state, the reactive powder concrete in the middle of the compressive side was crushed, and the reactive powder concrete surface layer burst open and partially spalled off. According to the test results and with reference to the relevant standards, equations for calculating the approximate ultimate bearing capacities of axially and eccentrically compressed reactive powder concrete columns were proposed.


Sign in / Sign up

Export Citation Format

Share Document