Flexural Stiffness Analysis of the PVC–CFRP-Confined Concrete Columns with RC Ring Beam Joint Under Eccentric Load

Author(s):  
Ping Wu ◽  
Jie Liu ◽  
Feng Yu ◽  
Yucong Guan ◽  
Yuan Fang ◽  
...  
2019 ◽  
Vol 12 (3) ◽  
pp. 518-550
Author(s):  
D. S. OLIVEIRA ◽  
R. CARRAZEDO

Abstract In this paper, the finite element method was used for the numerical modeling of columns with square, rectangular and circular cross sections wrapped with FRP. The numerical modeling was successfully calibrated with the experimental data considering axial load, axial strain and transverse strain. The distribution of compressive stresses in the cross section of the column indicates that for centered load, circular cross sections have uniform distribution and for square and rectangular sections the effective confined concrete was defined by parabolas and concentrates next to the rounded corners. For eccentric load, the effective confined region moves to the most confined edge, thus, this does not reduce the gain for square and rectangular columns, but is unfavorable for circular columns.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 355
Author(s):  
Qudeer Hussain ◽  
Anat Ruangrassamee ◽  
Somnuk Tangtermsirikul ◽  
Panuwat Joyklad ◽  
Anil C. Wijeyewickrema

This research investigates the behavior of square concrete columns externally wrapped by low-cost and easily available fiber rope reinforced polymer (FRRP) composites. This study mainly aims to explore the axial stress-strain relationships of FRRP-confined square columns. Another objective is to assess suitable predictive models for the ultimate strength and strain of FRRP-confined square columns. A total of 60 square concrete columns were cast, strengthened, and tested under compression. The parameters were the corner radii of square columns (0, 13, and 26 mm) and different materials of FRRP composites (polyester, hemp, and cotton FRRP composites). The strength and deformability of FRRP-confined specimens were observed to be higher than the unconfined specimens. It was observed that strength gains of FRRP-confined concrete columns and corner radii were directly proportional. The accuracy of ultimate strength and strain models developed for synthetic FRRP-confined square columns was assessed using the test results of this study, showing the need for the development of improved predictive models for FRRP-confined square columns. Newly developed unified models were found to be accurate in predicting the ultimate strength and strain of FRRP-confined columns.


1981 ◽  
Vol 107 (1) ◽  
pp. 181-202
Author(s):  
M.J.N. Priestley ◽  
R. Park ◽  
R. T. Potangaroa

2019 ◽  
Vol 275 ◽  
pp. 02016
Author(s):  
Ben-ben Li ◽  
Hai-bei Xiong ◽  
Jia-fei Jiang ◽  
Yang Zhan

This paper presents a modified concrete damage plasticity model (CDPM) for passively confined concrete within the concrete damage plasticity theory frame in ABAQUS. The modified CDPM can be used to simulate concrete under non-uniform passive confinement, for example, Fiber-reinforced polymer (FRP)-confined square concrete columns. The modification of CDPM includes a flow rule and a strain hardening/softening criterion in which dilation angle and yield stress are important parameters. Based on the true-triaxial experiment results of passively confined concrete, the dilation angle and yield stress were determined considering different confinement stiffness and non-uniform confinement stiffness ratio. Finally, the modified CDPM were incorporated in the ABAQUS model. The prediction of the finite element model of FRP-confined square concrete columns shows good prediction accuracy.


2020 ◽  
Vol 23 (10) ◽  
pp. 2018-2029
Author(s):  
Hongbing Li ◽  
Fangbo Wu ◽  
Liangtao Bu ◽  
Yong Liu ◽  
Jiang Yao

In this study, the mechanical properties and failure characteristics of steel reactive powder concrete columns with different strength grades were investigated through compression testing. Six steel reactive powder concrete columns were tested; three columns underwent axial compression testing and three columns underwent eccentric compression testing. The results of the axial compression testing showed that steel and reactive powder concrete could work cooperatively at the initial stage, and the final column failure mode was primarily splitting failure at the end of the column, with the formation of a main crack in the longitudinal direction extending to the middle of the column. The results of the eccentric compression testing showed that the eccentrically loaded steel reactive powder concrete columns had comparatively strong deformability. The columns presented ductile failure mode under the eccentric load with 0.2 eccentricity. The final failure of the column involved a sudden increase in the horizontal crack width on the tension side, the steel flange on the tension side reached the yield state, the reactive powder concrete in the middle of the compressive side was crushed, and the reactive powder concrete surface layer burst open and partially spalled off. According to the test results and with reference to the relevant standards, equations for calculating the approximate ultimate bearing capacities of axially and eccentrically compressed reactive powder concrete columns were proposed.


Sign in / Sign up

Export Citation Format

Share Document