scholarly journals Kernel Principal Component Analysis of Coil Compression in Parallel Imaging

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yuchou Chang ◽  
Haifeng Wang

A phased array with many coil elements has been widely used in parallel MRI for imaging acceleration. On the other hand, it results in increased memory usage and large computational costs for reconstructing the missing data from such a large number of channels. A number of techniques have been developed to linearly combine physical channels to produce fewer compressed virtual channels for reconstruction. A new channel compression technique via kernel principal component analysis (KPCA) is proposed. The proposed KPCA method uses a nonlinear combination of all physical channels to produce a set of compressed virtual channels. This method not only reduces the computational time but also improves the reconstruction quality of all channels when used. Taking the traditional GRAPPA algorithm as an example, it is shown that the proposed KPCA method can achieve better quality than both PCA and all channels, and at the same time the calculation time is almost the same as the existing PCA method.

2007 ◽  
Vol 04 (01) ◽  
pp. 15-26 ◽  
Author(s):  
XIUQING WANG ◽  
ZENG-GUANG HOU ◽  
LONG CHENG ◽  
MIN TAN ◽  
FEI ZHU

The ability of cognition and recognition for complex environment is very important for a real autonomous robot. A new scene analysis method using kernel principal component analysis (kernel-PCA) for mobile robot based on multi-sonar-ranger data fusion is put forward. The principle of classification by principal component analysis (PCA), kernel-PCA, and the BP neural network (NN) approach to extract the eigenvectors which have the largest k eigenvalues are introduced briefly. Next the details of PCA, kernel-PCA and the BP NN method applied in the corridor scene analysis and classification for the mobile robots based on sonar data are discussed and the experimental results of those methods are given. In addition, a corridor-scene-classifier based on BP NN is discussed. The experimental results using PCA, kernel-PCA and the methods based on BP neural networks (NNs) are compared and the robustness of those methods are also analyzed. Such conclusions are drawn: in corridor scene classification, the kernel-PCA method has advantage over the ordinary PCA, and the approaches based on BP NNs can also get satisfactory results. The robustness of kernel-PCA is better than that of the methods based on BP NNs.


2021 ◽  
Vol 11 (14) ◽  
pp. 6370
Author(s):  
Elena Quatrini ◽  
Francesco Costantino ◽  
David Mba ◽  
Xiaochuan Li ◽  
Tat-Hean Gan

The water purification process is becoming increasingly important to ensure the continuity and quality of subsequent production processes, and it is particularly relevant in pharmaceutical contexts. However, in this context, the difficulties arising during the monitoring process are manifold. On the one hand, the monitoring process reveals various discontinuities due to different characteristics of the input water. On the other hand, the monitoring process is discontinuous and random itself, thus not guaranteeing continuity of the parameters and hindering a straightforward analysis. Consequently, further research on water purification processes is paramount to identify the most suitable techniques able to guarantee good performance. Against this background, this paper proposes an application of kernel principal component analysis for fault detection in a process with the above-mentioned characteristics. Based on the temporal variability of the process, the paper suggests the use of past and future matrices as input for fault detection as an alternative to the original dataset. In this manner, the temporal correlation between process parameters and machine health is accounted for. The proposed approach confirms the possibility of obtaining very good monitoring results in the analyzed context.


2009 ◽  
Vol 147-149 ◽  
pp. 588-593 ◽  
Author(s):  
Marcin Derlatka ◽  
Jolanta Pauk

In the paper the procedure of processing biomechanical data has been proposed. It consists of selecting proper noiseless data, preprocessing data by means of model’s identification and Kernel Principal Component Analysis and next classification using decision tree. The obtained results of classification into groups (normal and two selected pathology of gait: Spina Bifida and Cerebral Palsy) were very good.


Sign in / Sign up

Export Citation Format

Share Document