scholarly journals Analytical Solution and Application for One-Dimensional Consolidation of Tailings Dam

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Hai-ming Liu ◽  
Gan Nan ◽  
Wei Guo ◽  
Chun-he Yang ◽  
Chao Zhang

The pore water pressure of tailings dam has a very great influence on the stability of tailings dam. Based on the assumption of one-dimensional consolidation and small strain, the partial differential equation of pore water pressure is deduced. The obtained differential equation can be simplified based on the parameters which are constants. According to the characteristics of the tailings dam, the pore water pressure of the tailings dam can be divided into the slope dam segment, dry beach segment, and artificial lake segment. The pore water pressure is obtained through solving the partial differential equation by separation variable method. On this basis, the dissipation and accumulation of pore water pressure of the upstream tailings dam are analyzed. The example of typical tailings is introduced to elaborate the applicability of the analytic solution. What is more, the application of pore water pressure in tailings dam is discussed. The research results have important scientific and engineering application value for the stability of tailings dam.

2021 ◽  
Vol 11 (13) ◽  
pp. 6044
Author(s):  
Tan Manh Do ◽  
Jan Laue ◽  
Hans Mattsson ◽  
Qi Jia

One of the challenges in upstream tailings dam projects is to ensure the allowable rate of deposition of tailings in the pond (i.e., pond filling rate) while maintaining the stability of the dam. This is due to the fact that an upstream tailings dam is constructed by placing dikes on top of previously deposited soft tailings, which could lead to a decrease in dam stability because of the build-up of excess pore water pressure. The main purpose of this work is to investigate the effects of pond filling rates on excess pore water pressure and the stability of an upstream tailings dam by a numerical study. A finite element software was used to simulate the time-dependent pond filling process and staged dam construction under various pond filling rates. As a result, excess pore water pressure increased in each raising phase and decreased in the subsequent consolidation phase. However, some of the excess pore water pressure remained after every consolidation phase (i.e., the build-up of excess pore water pressure), which could lead to a potentially critical situation in the stability of the dam. In addition, the remaining excess pore water pressure varied depending on the pond filling rates, being larger for high filling rates and smaller for low filling rates. It is believed that the approach used in this study could be a guide for dam owners to keep a sufficiently high pond filling rate but still ensure the desirable stability of an upstream tailings dam.


1979 ◽  
Vol 16 (3) ◽  
pp. 521-531 ◽  
Author(s):  
Delwyn G. Fredlund ◽  
Jamshed U. Hasan

A one-dimensional consolidation theory is presented for unsaturated soils. The assumptions made are in keeping with those used in the conventional theory of consolidation for saturated soils, with the additional assumption that the air phase is continuous. Two partial differential equations are derived to describe the transient processes taking place as a result of the application of a total load to an unsaturated soil.After a load has been applied to the soil, air and water flow simultaneously from the soil until equilibrium conditions are achieved. The simultaneous solution of the two partial differential equations gives the pore-air and pore-water pressures at any time and any depth throughout the soil. Two families of dimensionless curves are generated to show the pore-air and pore-water dissipation curves for various soil properties.For the case of an applied total load, two equations are also derived to predict the initial pore-air and pore-water pressure boundary conditions. An example problem demonstrates the nature of the results.


2022 ◽  
Author(s):  
Sahila Beegum ◽  
P J Jainet ◽  
Dawn Emil ◽  
K P Sudheer ◽  
Saurav Das

Abstract Soil pore water pressure analysis is crucial for understanding landslide initiation and prediction. However, field-scale transient pore water pressure measurements are complex. This study investigates the integrated application of simulation models (HYDRUS-2D/3D and GeoStudio–Slope/W) to analyze pore water pressure-induced landslides. The proposed methodology is illustrated and validated using a case study (landslide in India, 2018). Model simulated pore water pressure was correlated with the stability of hillslope, and simulation results were found to be co-aligned with the actual landslide that occurred in 2018. Simulations were carried out for natural and modified hill slope geometry in the study area. The volume of water in the hill slope, temporal and spatial evolution of pore water pressure, and factor of safety were analysed. Results indicated higher stability in natural hillslope (factor of safety of 1.243) compared to modified hill slope (factor of safety of 0.946) despite a higher pore water pressure in the natural hillslope. The study demonstrates the integrated applicability of the physics-based models in analyzing the stability of hill slopes under varying pore water pressure and hill slope geometry and its accuracy in predicting future landslides.


2011 ◽  
Vol 255-260 ◽  
pp. 3488-3492
Author(s):  
Bao Lin Xiong ◽  
Jing Song Tang ◽  
Chun Jiao Lu

Rainfall is one of the main factors that influence the stability of slope. Rainfall infiltration will cause soil saturation changing and further influence pore water pressure and medium permeability coefficient. Based on porous media saturation-unsaturated flow theory, the slope transient seepage field is simulated under the conditions of rainfall infiltration. It is shown that change of pore water pressure in slope soil lag behind relative changes in rainfall conditions. As the rainfall infiltrate, unsaturated zone in top half of slope become diminution, the soil suction and shear strength reduce, so stabilization of soil slope is reduced.


2002 ◽  
Vol 39 (5) ◽  
pp. 1126-1138 ◽  
Author(s):  
E Mohamedelhassan ◽  
J Q Shang

In this study, a vacuum and surcharge combined one-dimensional consolidation model is developed. Terzaghi's consolidation theory is revisited by applying the initial and boundary conditions corresponding to combined vacuum and surcharge loading on a soil. A test apparatus is designed, manufactured, and assembled to verify the model. The apparatus has the capacity of applying designated vacuum and surcharge pressures to a soil specimen, and it allows for the measurement of the excess pore-water pressure, settlement, and volume change during the consolidation process. Two series of tests are performed using the apparatus on two reconstituted natural clay soils, namely, the Welland sediment at water contents close to its liquid limit and the Orleans clay, reconstituted and consolidated under an effective stress of 60 kPa. The former test series mimics the strengthening of a very soft soil, such as the hydraulic fill used in land reclamation. The latter test series is designed to study vacuum–surcharge combined strengthening of a consolidated soil. It is demonstrated from the experiments that the one-dimensional vacuum-surcharge consolidation model describes the consolidation behaviour of both soils well. The consolidation characteristics of the soils show no discrimination against the nature of the consolidation pressure, namely, whether they are consolidated under the vacuum pressure alone, under the surcharge pressure alone, or under a pressure generated by the combined application of vacuum and surcharge. The study concluded that the soil consolidation characteristics obtained from the conventional consolidation tests can be used in the design of vacuum preloading systems, provided that the one-dimensional loading condition prevails.Key words: consolidation, soil improvement, vacuum pressure, surcharge pressure, excess pore-water pressure, soil consolidation parameters.


2007 ◽  
Vol 49 (1) ◽  
pp. 3-15
Author(s):  
Yasuo YANAKA ◽  
Akira TAKAHASHI ◽  
Yoshinobu HOS H INO ◽  
Tomokazu SUZUKI ◽  
Makoto NISHIGAKI ◽  
...  

1993 ◽  
Vol 30 (3) ◽  
pp. 491-505 ◽  
Author(s):  
Delwyn G. Fredlund ◽  
Zai Ming Zhang ◽  
Karen Macdonald

The stability of potash tailings piles is investigated using a pore-water pressure generation and dissipation model together with a limit equilibrium analysis. It is found that a shallow toe failure mode is generally the most applicable and that the stability may be influenced by pore-water pressure migration below the pile. It is suggested that field studies would be useful in evaluating stability in the toe region of the pile. Key words : potash tailings, slope stability, pore pressure dissipation, solutioning.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
I. Rusagara ◽  
C. Harley

The temperature profile for fins with temperature-dependent thermal conductivity and heat transfer coefficients will be considered. Assuming such forms for these coefficients leads to a highly nonlinear partial differential equation (PDE) which cannot easily be solved analytically. We establish a numerical balance rule which can assist in getting a well-balanced numerical scheme. When coupled with the zero-flux condition, this scheme can be used to solve this nonlinear partial differential equation (PDE) modelling the temperature distribution in a one-dimensional longitudinal triangular fin without requiring any additional assumptions or simplifications of the fin profile.


Sign in / Sign up

Export Citation Format

Share Document