scholarly journals A Joint Channel Selection and Routing Protocol for Cognitive Radio Network

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yuting Wang ◽  
Guoqiang Zheng ◽  
Huahong Ma ◽  
Yang Li ◽  
Jishun Li

In cognitive radio network, the activities of primary users will cause great influence on the stability of multiple hops routes between cognitive users. In this regard, a joint channel selection and routing protocol, termed as CSRP, is proposed to ensure route stability and reduce route latency between cognitive users. The channel availability based on historical information and the channel switching delay are used as the channel selection criteria to choose the end-to-end shortest route which possesses high data delivery probabilities and low delays. Besides, simulation results show that the proposed protocol has a better performance in terms of packet transmission delay and data delivery rate compared with the routing protocols based on delay (TDRP) and based on joint routing and channel allocation (PUB-JRCA).

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Ahmed Salah ◽  
Heba M. Abdel-Atty ◽  
Rawya Y. Rizk

Emerging cognitive radio networking technology potentially provides a promising solution to the spectrum underutilization problem in wireless access. In this paper, a cross-layer routing for secondary multihop is studied in cognitive radio network operating in television white spaces. The framework considers a joint channel, power, and routing assignment under signal to interference noise ratio (SINR) constraints. The problem is formulated as a maximum concurrent multicommodity flow problem. The goal of conducting this research is to develop a new routing protocol for the secondary multihop cognitive radio network. Therefore, the objective of this paper focuses on maximizing a flow rate scaling factor. Moreover, the paper focuses on achieving multipath routing when it is possible under SINR constraints to utilize all possible unused channels efficiently. The numerical results proved the strength of the proposed algorithm in its routing ability under the physical model of SINR, in addition to the ability of using multipath routing if there are available free channels to be used in the cognitive communication paradigm.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Tauqeer Safdar Malik ◽  
Mohd Hilmi Hasan

In the existing network-layered architectural stack of Cognitive Radio Ad Hoc Network (CRAHN), channel selection is performed at the Medium Access Control (MAC) layer. However, routing is done on the network layer. Due to this limitation, the Secondary/Unlicensed Users (SUs) need to access the channel information from the MAC layer whenever the channel switching event occurred during the data transmission. This issue delayed the channel selection process during the immediate routing decision for the channel switching event to continue the transmission. In this paper, a protocol is proposed to implement the channel selection decisions at the network layer during the routing process. The decision is based on past and expected future routing decisions of Primary Users (PUs). A learning agent operating in the cross-layer mode of the network-layered architectural stack is implemented in the spectrum mobility manager to pass the channel information to the network layer. This information is originated at the MAC layer. The channel selection is performed on the basis of reinforcement learning algorithms such as No-External Regret Learning, Q-Learning, and Learning Automata. This leads to minimizing the channel switching events and user interferences in the Reinforcement Learning- (RL-) based routing protocol. Simulations are conducted using Cognitive Radio Cognitive Network simulator based on Network Simulator (NS-2). The simulation results showed that the proposed routing protocol performed better than all the other comparative routing protocols in terms of number of channel switching events, average data rate, packet collision, packet loss, and end-to-end delay. The proposed routing protocol implies the improved Quality of Service (QoS) of the delay sensitive and real-time networks such as Cellular and Tele Vision (TV) networks.


Sign in / Sign up

Export Citation Format

Share Document