scholarly journals Adaptive Finite-Time Mixed Interlayer Synchronization of Two-Layer Complex Networks with Time-Varying Coupling Delay

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Xiaoyun Tang ◽  
Zhanying Yang ◽  
Jie Zhang

This paper is concerned with two-layer complex networks with unidirectional interlayer couplings, where the drive and response layer have time-varying coupling delay and different topological structures. An adaptive control scheme is proposed to investigate finite-time mixed interlayer synchronization (FMIS) of two-layer networks. Based on the Lyapunov stability theory, a criterion for realizing FMIS is derived. In addition, several sufficient conditions for realizing mixed interlayer synchronization are given. Finally, some numerical simulations are presented to verify the correctness and effectiveness of theoretical results. Meanwhile, the proposed adaptive control strategy is demonstrated to be nonfragile with the noise perturbation.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xinli Fang ◽  
Qiang Yang ◽  
Wenjun Yan

This paper exploits the network outer synchronization problem in a generic context for complex networks with nonlinear time-delay characteristics and nonidentical time-varying topological structures. Based on the classic Lyapunov stability theory, the synchronization criteria and adaptive control strategy are presented, respectively, by adopting an appropriate Lyapunov-Krasovskii energy function and the convergence of the system error can also be well proved. The existing results of network outer synchronization can be obtained by giving certain conditions, for example, treating the coupling matrices as time-invariant, and by applying the suggested generic synchronization criteria and control scheme. The numerical simulation experiments for networks scenarios with dynamic chaotic characteristics and time-varying topologies are carried out and the result verifies the correctness and effectiveness of the proposed control solution.


2021 ◽  
Vol 8 (4) ◽  
pp. 842-854
Author(s):  
N. Jayanthi ◽  
◽  
R. Santhakumari ◽  

In this article, we investigate the problem of finite-time passivity for the complex-valued neural networks (CVNNs) with multiple time-varying delays. To begin, many definitions relevant to the finite-time passivity of CVNNs are provided; then the suitable control inputs are designed to guarantee the class of CVNNs are finite-time passive. In the meantime, some sufficient conditions of linear matrix inequalities (LMIs) are derived by using inequalities techniques and Lyapunov stability theory. Finally, a numerical example is presented to illustrate the usefulness of the theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xunwu Yin ◽  
Min Cao

The finite-time passivity problem is, respectively, investigated for stochastic coupled complex networks (SCCNs) with and without time-varying delay. Firstly, we present several new concepts about finite-time passivity in the sense of expectation on the basis of existing passivity definition. By designing appropriate controllers, the finite-time passivity of SCCNs with and without time-varying delay is obtained. In addition, the definition of finite-time synchronization in the sense of expectation is proposed. Under some sufficient conditions and designed controllers, finite-time passivity derives finite-time synchronization. Finally, two examples are given to demonstrate the effectiveness of finite-time passive and synchronization criteria.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Yi Zhao ◽  
Jianwen Feng ◽  
Jingyi Wang

This paper investigates the cluster synchronization of impulsive complex networks with stochastic perturbation and time-varying delays. Besides, the nodes in the complex networks are nonidentical. By utilizing the Lyapunov stability theory, stochastic analysis theory, and linear matrix inequalities (LMI), sufficient conditions are derived to guarantee the cluster synchronization. The numerical simulation is provided to show the effectiveness of the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jinfang Zhang ◽  
Yuanhua Qiao ◽  
Jun Miao ◽  
Lijuan Duan ◽  
Yanjun Zeng

Global synchronization analysis for complex networks with coupling delay is investigated. Firstly the constant time delay is analyzed and then the case for time-varying delay is considered. Sufficient conditions for network synchronization are given based on Lyapunov functional, linear matrix inequality, and Kronecker product technique. The unknown variables in the sufficient conditions are fewer than those in the recent reference. Moreover, for the time-varying delay case, we find that the conditions are dependent on the bounds of both time delay and its derivative, and the derivative of the time-varying delay can be any value in the bounds. Finally, numerical examples are given to validate the effectiveness of the obtained results.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Nuo Jia ◽  
Tao Wang

A class of new hyperchaotic systems with different nonlinear terms is proposed, and the existence of hyperchaos is exhibited by calculating their Lyapunov exponent spectrums. Then the universal theories on modified projective synchronization (MPS) of the systems with general form which linearly depends on unknown parameters or time-varying parameters, are investigated by presenting an adaptive control strategy together with parameter update laws and a nonlinear control scheme based on Lyapunov stability theory. Subsequently, the presented control methods are applied to achieve MPS of the new hyperchaotic systems, and their effectiveness is illustrated by numerical simulations.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xuan Zhou ◽  
Kui Luo

This paper studies the cluster synchronization of a kind of complex networks by means of impulsive pinning control scheme. These networks are subject to stochastic noise perturbations and Markovian switching, as well as internal and outer time-varying delays. Using the Lyapunov-Krasovskii functional, Itö’s formula, and some linear matrix inequalities (LMI), several novel sufficient conditions are obtained to guarantee the desired cluster synchronization. At the end of this writing, a numerical simulation is given to demonstrate the effectiveness of those theoretical results.


Sign in / Sign up

Export Citation Format

Share Document