scholarly journals Passivity analysis of multiple time-varying time delayed complex variable neural networks in finite-time

2021 ◽  
Vol 8 (4) ◽  
pp. 842-854
Author(s):  
N. Jayanthi ◽  
◽  
R. Santhakumari ◽  

In this article, we investigate the problem of finite-time passivity for the complex-valued neural networks (CVNNs) with multiple time-varying delays. To begin, many definitions relevant to the finite-time passivity of CVNNs are provided; then the suitable control inputs are designed to guarantee the class of CVNNs are finite-time passive. In the meantime, some sufficient conditions of linear matrix inequalities (LMIs) are derived by using inequalities techniques and Lyapunov stability theory. Finally, a numerical example is presented to illustrate the usefulness of the theoretical results.

2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Lizi Yin ◽  
Xinchun Wang

We investigate the globalμ-stability in the mean square of impulsive stochastic neural networks with unbounded time-varying delays and continuous distributed delays. By choosing an appropriate Lyapunov-Krasovskii functional, a novel robust stability condition, in the form of linear matrix inequalities, is derived. These sufficient conditions can be tested by MATLAB LMI software packages. The results extend and improve the earlier publication. Two numerical examples are provided to illustrate the effectiveness of the obtained theoretical results.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750027 ◽  
Author(s):  
Wei Zhang ◽  
Chuandong Li ◽  
Tingwen Huang

In this paper, the stability and periodicity of memristor-based neural networks with time-varying delays are studied. Based on linear matrix inequalities, differential inclusion theory and by constructing proper Lyapunov functional approach and using linear matrix inequality, some sufficient conditions are obtained for the global exponential stability and periodic solutions of memristor-based neural networks. Finally, two illustrative examples are given to demonstrate the results.


2015 ◽  
Vol 742 ◽  
pp. 399-403
Author(s):  
Ya Jun Li ◽  
Jing Zhao Li

This paper investigates the exponential stability problem for a class of stochastic neural networks with leakage delay. By employing a suitable Lyapunov functional and stochastic stability theory technic, the sufficient conditions which make the stochastic neural networks system exponential mean square stable are proposed and proved. All results are expressed in terms of linear matrix inequalities (LMIs). Example and simulation are presented to show the effectiveness of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Deyi Li ◽  
Yuanyuan Wang ◽  
Guici Chen ◽  
Shasha Zhu

This paper pays close attention to the problem of finite-time stabilization related to stochastic inertial neural networks with or without time-delay. By establishing proper Lyapunov-Krasovskii functional and making use of matrix inequalities, some sufficient conditions on finite-time stabilization are obtained and the stochastic settling-time function is also estimated. Furthermore, in order to achieve the finite-time stabilization, both delayed and nondelayed nonlinear feedback controllers are designed, respectively, in terms of solutions to a set of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate the correction of the theoretical results and the effectiveness of the proposed control design method.


2021 ◽  
Vol 8 (3) ◽  
pp. 486-498
Author(s):  
N. Jayanthi ◽  
◽  
R. Santhakumari ◽  

This paper deals with the problem of finite-time projective synchronization for a class of neutral-type complex-valued neural networks (CVNNs) with time-varying delays. A simple state feedback control protocol is developed such that slave CVNNs can be projective synchronized with the master system in finite time. By employing inequalities technique and designing new Lyapunov--Krasovskii functionals, various novel and easily verifiable conditions are obtained to ensure the finite-time projective synchronization. It is found that the settling time can be explicitly calculated for the neutral-type CVNNs. Finally, two numerical simulation results are demonstrated to validate the theoretical results of this paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
M. J. Park ◽  
O. M. Kwon ◽  
E. J. Cha

This paper deals with the problem of stability analysis for generalized neural networks with time-varying delays. With a suitable Lyapunov-Krasovskii functional (LKF) and Wirtinger-based integral inequality, sufficient conditions for guaranteeing the asymptotic stability of the concerned networks are derived in terms of linear matrix inequalities (LMIs). By applying the proposed methods to two numerical examples which have been utilized in many works for checking the conservatism of stability criteria, it is shown that the obtained results are significantly improved comparing with the previous ones published in other literature.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 595 ◽  
Author(s):  
Pharunyou Chanthorn ◽  
Grienggrai Rajchakit ◽  
Sriraman Ramalingam ◽  
Chee Peng Lim ◽  
Raja Ramachandran

We study the robust dissipativity issue with respect to the Hopfield-type of complex-valued neural network (HTCVNN) models incorporated with time-varying delays and linear fractional uncertainties. To avoid the computational issues in the complex domain, we divide the original complex-valued system into two real-valued systems. We devise an appropriate Lyapunov-Krasovskii functional (LKF) equipped with general integral terms to facilitate the analysis. By exploiting the multiple integral inequality method, the sufficient conditions for the dissipativity of HTCVNN models are obtained via the linear matrix inequalities (LMIs). The MATLAB software package is used to solve the LMIs effectively. We devise a number of numerical models and their empirical results positively ascertain the obtained results.


2021 ◽  
pp. 1-11
Author(s):  
Wenbin Jin ◽  
Wenxia Cui ◽  
Zhenjie Wang

Finite-time synchronization is concerned for the fractional-order complex-valued fuzzy cellular neural networks (FOCVFCNNs) with leakage delay and time-varying delays. Without using the usual complex-valued system decomposition method, this paper designs the different forms of the controllers by using 2-norm. And we construct the appropriate Lyapunov functional and apply inequality analytical techniques, some new sufficient conditions are obtained to ensure finite-time synchronization of the FOCVFCNNs. The upper bound of setting-time function is obtained. Finally, numerical examples are examined to illustrate the effectiveness of the analytical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hui Xu ◽  
Ranchao Wu

Discrete neural models are of great importance in numerical simulations and practical implementations. In the current paper, a discrete model of continuous-time neural networks with variable and distributed delays is investigated. By Lyapunov stability theory and techniques such as linear matrix inequalities, sufficient conditions guaranteeing the existence and global exponential stability of the unique equilibrium point are obtained. Introduction of LMIs enables one to take into consideration the sign of connection weights. To show the effectiveness of the method, an illustrative example, along with numerical simulation, is presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Saravanan Shanmugam ◽  
M. Syed Ali ◽  
R. Vadivel ◽  
Gyu M. Lee

This study investigates the finite-time boundedness for Markovian jump neural networks (MJNNs) with time-varying delays. An MJNN consists of a limited number of jumping modes wherein it can jump starting with one mode then onto the next by following a Markovian process with known transition probabilities. By constructing new Lyapunov–Krasovskii functional (LKF) candidates, extended Wirtinger’s, and Wirtinger’s double inequality with multiple integral terms and using activation function conditions, several sufficient conditions for Markovian jumping neural networks are derived. Furthermore, delay-dependent adequate conditions on guaranteeing the closed-loop system which are stochastically finite-time bounded (SFTB) with the prescribed H ∞ performance level are proposed. Linear matrix inequalities are utilized to obtain analysis results. The purpose is to obtain less conservative conditions on finite-time H ∞ performance for Markovian jump neural networks with time-varying delay. Eventually, simulation examples are provided to illustrate the validity of the addressed method.


Sign in / Sign up

Export Citation Format

Share Document