scholarly journals The Antiapoptosis Effect of Geum japonicum Thunb. var. chinense Extracts on Cerebral Ischemia Reperfusion Injury via PI3K/Akt Pathway

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Bingjin Ou ◽  
Wei Tao ◽  
Songbai Yang ◽  
Jiateng Feng ◽  
Jinfeng Wang ◽  
...  

Geum japonicum Thunb. var. chinense (GJ) is a type of wild vegetable found in China and other Asian countries; it has been reported that its extracts possess a neuroprotective effect against cerebral ischemia reperfusion (CIR) injury. The aim of this study is to explore the effect GJ extracts on transient focal CIR injury and neurons apoptosis and to clarify its possible underlying mechanisms in vivo. Our results indicated that pretreatment with GJ extracts significantly ameliorated the infarct volume, decreased neurological deficits, lessened neural cells apoptosis, downregulated GFAP activity level, and increased surviving neurons. Moreover, GJ extracts preadministration increased Bcl-2 levels and attenuated the increase in the expressions of Bax and it also lowered the cleaved caspase-3 activity in ischemic cortex tissues which was caused by CIR and increased the expression of PI3K and p-Akt. The above effects of high dose of GJ (GJ-H) group were much better than those of low dose of GJ (GJ-L), which indicated that GJ extracts may be helpful in the suppression of CIR injury with a dose-dependent manner.

PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ge Kuang ◽  
Qin He ◽  
Yunmei Zhang ◽  
Ruichun Zhuang ◽  
Anling Xiang ◽  
...  

The aim of this study is to investigate the neuroprotective effects and relevant mechanism of GW0742, an agonist of PPAR-β, after global cerebral ischemia-reperfusion injury (GCIRI) in rats. The rats showed memory and cognitive impairment and cytomorphological change in the hippocampus neurons following GCIRI. These effects were significantly improved by pretreatment with GW0742 in the dose-dependent manner. The expressions of IL-1β, IL-6, and TNF-αwere increased after GCIRI, while the increases in these proinflammatory cytokines by GCIRI were inhibited by GW0742 pretreatment. Similarly, GW0742 pretreatment also improved the GCIRI-induced decrease in the expression of IL-10, which can act as an inhibitory cytokine to reduce cerebral ischemic injury. For another, NF-κB p65 expression was significantly increased in hippocampal neurons with apparent nuclear translocation after global cerebral IRI, and these phenomena were also largely attenuated by GW0742 pretreatment. Moreover, the mRNA and protein expressions of PPAR-βwere significantly decreased in GCIRI + GW0742 groups when compared with those in GCIRI group. Our data suggests that the PPAR-βagonist GW0742 can exert significant neuroprotective effect against GCIRI in rats via PPAR-βactivation and its anti-inflammation effect mediated by the inhibition of expression and activation of NF-κB in the hippocampus.


2016 ◽  
Vol 94 (11) ◽  
pp. 1187-1192 ◽  
Author(s):  
Mengyang Shui ◽  
Xiaoyan Liu ◽  
Yuanjun Zhu ◽  
Yinye Wang

Hydrogen sulfide (H2S), the third gas transmitter, has been proven to be neuroprotective in cerebral ischemic injury, but whether its effect is mediated by regulating autophagy is not yet clear. The present study was undertaken to explore the underlying mechanisms of exogenous H2S on autophagy regulation in cerebral ischemia. The effects and its connection with autophagy of NaHS, a H2S donor, were observed through neurological deficits and cerebral infarct volume in middle cerebral artery occlusion (MCAO) mice; autophagy-related proteins and autophagy complex levels in the ischemic hemisphere were detected with Western blot assay. Compared with the model group, NaHS significantly decreased infarct volume and improved neurological deficits; rapamycin, an autophagy activator, abolished the effect of NaHS; NaHS decreased the expression of LC3-II and up-regulated p62 expression in the ischemic cortex 24 h after ischemia. However, NaHS did not significantly influence Beclin-1 expression. H2S has a neuroprotective effect on ischemic injury in MCAO mice; this effect is associated with its influence in down-regulating autophagosome accumulation.


2020 ◽  
Author(s):  
Xiaowei Sun ◽  
Hao Liu ◽  
Zhongren Sun ◽  
Beng Zhang ◽  
Xinyu Wang ◽  
...  

Abstract Background: Acupuncture treatment possesses the neuroprotection potential to attenuate cerebral ischemia-reperfusion (I/R) injury. Endoplasmic reticulum (ER) stress has been suggested to be involved in the pathogenic mechanism of cerebral I/R injury. Whether acupuncture protects against cerebral I/R injury via regulating ER stress remains unclear. This study aimed to evaluate the role of ER stress in the neuroprotection of acupuncture against cerebral I/R injury and its underlying mechanisms. Methods: Cerebral I/R injury was induced by middle cerebral artery occlusion (MCAO) in rats. Acupuncture was carried out at Baihui (GV 20), Hegu (L14), and Taichong (Liv3) acupoints in rats immediately after reperfusion. The infarct volumes, neurological score, ER stress, autophagy and apoptosis were determined. Results: Acupuncture treatment decreased infarct volume, neurological score and suppressed ER stress via inactivation of ATF-6, PERK, and IRE1 pathways in MCAO rats. Attributing to ER stress suppression, 4-PBA (ER stress inhibitor) promoted the beneficial effect of acupuncture against cerebral I/R injury. Whereas, ER stress activator tunicamycin significantly counteracted the neuroprotective effects of acupuncture. In addition, acupuncture restrained autophagy via regulating ER stress in MCAO rats. Finally, ER stress took part in the neuroprotective effect of acupuncture against apoptosis in cerebral I/R injury. Conclusions: Our findings suggest that acupuncture offers neuroprotection against cerebral I/R injury, which is attributed to repressing ER stress-mediated autophagy and apoptosis.


2011 ◽  
Vol 114 (2) ◽  
pp. 340-354 ◽  
Author(s):  
Li-bang Yuan ◽  
Hai-long Dong ◽  
Hao-Peng Zhang ◽  
Rui-ni Zhao ◽  
Gu Gong ◽  
...  

Background Recent studies suggest that the novel neuropeptide orexin-A may play an essential role during neuronal damage. However, the function of orexin-A during brain ischemia remains unclear. Recently, hypoxia-inducible factor-1α (HIF-1α) was shown to be activated by orexin-A. The aim of the current study is to test the hypothesis that administration of exogenous orexin-A can attenuate ischemia-reperfusion injury through the facilitation of HIF-1α expression. Methods Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 120 min. Rats were treated with different doses of orexin-A or vehicle before the ischemia and at the onset of reperfusion. To investigate the action of HIF-1α in the neuroprotective effects of orexin-A, the HIF-1α inhibitor YC-1 was used alone or combined with orexin-A. Neurologic deficit scores and infarct volume were assessed. Brains were harvested for immunohistochemical staining and western blot analysis. Results Orexin-A significantly ameliorated neurologic deficit scores and reduced infarct volume after cerebral ischemia reperfusion. Administration of 30 μg/kg orexin-A showed optimal neuroprotective effects. This effect was still present 7 days after reperfusion. Furthermore, orexin-A decreased the number of apoptotic cells and significantly enhanced HIF-1α expression after cerebral ischemia reperfusion. Moreover, the facilitation of HIF-1α expression was accompanied with inhibition of von Hippel-Lindau expression. Administration of HIF-1α inhibitor suppressed the increase of HIF-1α and reversed the neuroprotective effects of orexin-A. Conclusions Orexin-A has a neuroprotective effect against cerebral ischemia-reperfusion injury. These effects may be mediated through the HIF-1α pathway.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jing Sun ◽  
Fangyan Wang ◽  
Haixiao Li ◽  
Huiqing Zhang ◽  
Jiangtao Jin ◽  
...  

Sodium butyrate (NaB) is a dietary microbial fermentation product of fiber and serves as an important neuromodulator in the central nervous system. In this study, we further investigated that NaB attenuated cerebral ischemia/reperfusion (I/R) injury in vivo and its possible mechanisms. NaB (5, 10 mg/kg) was administered intragastrically 3 h after the onset of reperfusion in bilateral common carotid artery occlusion (BCCAO) mice. After 24 h of reperfusion, neurological deficits scores were estimated. Morphological examination was performed by electron microscopy and hematoxylin-eosin (H&E) staining. The levels of oxidative stress and inflammatory cytokines were assessed. Apoptotic neurons were measured by TUNEL; apoptosis-related protein caspase-3, Bcl-2, Bax, the phosphorylation Akt (p-Akt), and BDNF were assayed by western blot and immunohistochemistry. The results showed that 10 mg/kg NaB treatment significantly ameliorated neurological deficit and histopathology changes in cerebral I/R injury. Moreover, 10 mg/kg NaB treatment markedly restored the levels of MDA, SOD, IL-1β, TNF-α, and IL-8. 10 mg/kg NaB treatment also remarkably inhibited the apoptosis, decreasing the levels of caspase-3 and Bax and increasing the levels of Bcl-2, p-Akt, and BDNF. This study suggested that NaB exerts neuroprotective effects on cerebral I/R injury by antioxidant, anti-inflammatory, and antiapoptotic properties and BDNF-PI3K/Akt pathway is involved in antiapoptotic effect.


2020 ◽  
Author(s):  
Xiaowei Sun ◽  
Hao Liu ◽  
Zhongren Sun ◽  
Beng Zhang ◽  
Xinyu Wang ◽  
...  

Abstract Background: Acupuncture treatment possesses the neuroprotection potential to attenuate cerebral ischemia-reperfusion (I/R) injury. Endoplasmic reticulum (ER) stress has been suggested to be involved in the pathogenic mechanism of cerebral I/R injury. Whether acupuncture protects against cerebral I/R injury via regulating ER stress remains unclear. This study aimed to evaluate the role of ER stress in the neuroprotection of acupuncture against cerebral I/R injury and its underlying mechanisms. Methods: Cerebral I/R injury was induced by middle cerebral artery occlusion (MCAO) in rats. Acupuncture was carried out at Baihui (GV 20), Hegu (L14), and Taichong (Liv3) acupoints in rats immediately after reperfusion. The infarct volumes, neurological score, ER stress, autophagy and apoptosis were determined. Results: Acupuncture treatment decreased infarct volume, neurological score and suppressed ER stress via inactivation of ATF-6, PERK, and IRE1 pathways in MCAO rats. Attributing to ER stress suppression, 4-PBA (ER stress inhibitor) promoted the beneficial effect of acupuncture against cerebral I/R injury. Whereas, ER stress activator tunicamycin significantly counteracted the neuroprotective effects of acupuncture. In addition, acupuncture restrained autophagy via regulating ER stress in MCAO rats. Finally, ER stress took part in the neuroprotective effect of acupuncture against apoptosis in cerebral I/R injury. Conclusions: Our findings suggest that acupuncture offers neuroprotection against cerebral I/R injury, which is attributed to repressing ER stress-mediated autophagy and apoptosis.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Xiaowei Sun ◽  
Hao Liu ◽  
Zhongren Sun ◽  
Beng Zhang ◽  
Xinyu Wang ◽  
...  

Abstract Background Acupuncture treatment possesses the neuroprotection potential to attenuate cerebral ischemia–reperfusion (I/R) injury. Endoplasmic reticulum (ER) stress has been suggested to be involved in the pathogenic mechanism of cerebral I/R injury. Whether acupuncture protects against cerebral I/R injury via regulating ER stress remains unclear. This study aimed to evaluate the role of ER stress in the neuroprotection of acupuncture against cerebral I/R injury and its underlying mechanisms. Methods Cerebral I/R injury was induced by middle cerebral artery occlusion (MCAO) in rats. Acupuncture was carried out at Baihui (GV 20), and Qubin (GB7) acupoints in rats immediately after reperfusion. The infarct volumes, neurological score, ER stress, autophagy and apoptosis were determined. Results Acupuncture treatment decreased infarct volume, neurological score and suppressed ER stress via inactivation of ATF-6, PERK, and IRE1 pathways in MCAO rats. Attributing to ER stress suppression, 4-PBA (ER stress inhibitor) promoted the beneficial effect of acupuncture against cerebral I/R injury. Whereas, ER stress activator tunicamycin significantly counteracted the neuroprotective effects of acupuncture. In addition, acupuncture restrained autophagy via regulating ER stress in MCAO rats. Finally, ER stress took part in the neuroprotective effect of acupuncture against apoptosis in cerebral I/R injury. Conclusions Our findings suggest that acupuncture offers neuroprotection against cerebral I/R injury, which is attributed to repressing ER stress-mediated autophagy and apoptosis.


Author(s):  
Jun Ling ◽  
Haijian Cai ◽  
Muya Lin ◽  
Shunli Qi ◽  
Jian Du ◽  
...  

Abstract It has been widely accepted that autophagic cell death exacerbates the progression of cerebral ischemia/reperfusion (I/R). Our previous study revealed that overexpression of reticulon protein 1-C (RTN1-C) is involved in cerebral I/R injury. However, the underlying mechanisms have not been studied intensively. This study was designed to evaluate the effect of RTN1-C on autophagy under cerebral I/R. Using an in vitro oxygen-glucose deprivation followed by reoxygenation and a transient middle cerebral artery occlusion model in rats, we found that the expression of RTN1-C protein was significantly upregulated. We also revealed that RTN1-C knockdown suppressed overactivated autophagy both in vivo and in vitro, as indicated by decreased expressions of autophagic proteins. The number of Beclin-1/propidium iodide-positive cells was significantly less in the LV-shRTN1-C group than in the LV-shNC group. In addition, rapamycin, an activator of autophagy, aggravated cerebral I/R injury. RTN1-C knockdown reduced brain infarct volume, improved neurological deficits, and attenuated cell vulnerability to cerebral I/R injury after rapamycin treatment. Taken together, our findings demonstrated that the modulation of autophagy from RTN1-C may play vital roles in cerebral I/R injury, providing a potential therapeutic treatment for ischemic brain injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xueling Zhou ◽  
Wenhao Lu ◽  
You Wang ◽  
Jiani Li ◽  
Yong Luo

A20-binding inhibitor of NF-κB 1 (ABIN1) is an inhibitor of NF-κB and exerts anti-inflammatory effect. Electroacupuncture (EA) is considered as a neuroprotective strategy by inhibiting neuroinflammatory damage after cerebral ischemia. This study was performed to explore the role of ABIN1 and investigate whether the ABIN1 is involved in the mechanism of EA in cerebral ischemia/reperfusion (I/R) rats. Male Sprague-Dawley (SD) rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and received EA after reperfusion once a day. Lentivirus-mediated ABIN1 gene knockdown was used to detect the role of ABIN1 in neuroinflammation after I/R. ABIN1 expression, proinflammatory cytokine levels, microglial activation, neurological function, infarct volumes, and NF-κB activation were assessed. ABIN1 expression was elevated in the peri-infarct cortex and was further upregulated by EA. ABIN1 knockdown increased the levels of proinflammatory cytokines and activation of microglia, worsened neurological deficits, and enlarged the infarct volume. Moreover, ABIN1 was blocked to partially reverse the neuroprotective effect of EA, and this treatment weakened the ability of EA to suppress NF-κB activity. Based on these findings, ABIN1 is a potential suppressor of neuroinflammation and ABIN1 mediates the antineuroinflammatory effect of EA in cerebral I/R rats.


2020 ◽  
Author(s):  
Xiaowei Sun ◽  
Hao Liu ◽  
Zhongren Sun ◽  
Beng Zhang ◽  
Xinyu Wang ◽  
...  

Abstract Background: Acupuncture treatment possesses the neuroprotection potential to attenuate cerebral ischemia-reperfusion (I/R) injury. Endoplasmic reticulum (ER) stress has been suggested to be involved in the pathogenic mechanism of cerebral I/R injury. Whether acupuncture protects against cerebral I/R injury via regulating ER stress remains unclear. This study aimed to evaluate the role of ER stress in the neuroprotection of acupuncture against cerebral I/R injury and its underlying mechanisms. Methods: Cerebral I/R injury was induced by middle cerebral artery occlusion (MCAO) in rats. Acupuncture was carried out at Baihui (GV 20), Hegu (L14), and Taichong (Liv3) acupoints in rats immediately after reperfusion. The infarct volumes, neurological score, ER stress, autophagy and apoptosis were determined. Results: Acupuncture treatment decreased infarct volume, neurological score and suppressed ER stress via inactivation of ATF-6, PERK, and IRE1 pathways in MCAO rats. Attributing to ER stress suppression, 4-PBA (ER stress inhibitor) promoted the beneficial effect of acupuncture against cerebral I/R injury. Whereas, ER stress activator tunicamycin significantly counteracted the neuroprotective effects of acupuncture. In addition, acupuncture restrained autophagy via regulating ER stress in MCAO rats. Finally, ER stress took part in the neuroprotective effect of acupuncture against apoptosis in cerebral I/R injury. Conclusions: Our findings suggest that acupuncture offers neuroprotection against cerebral I/R injury, which is attributed to repressing ER stress-mediated autophagy and apoptosis.


Sign in / Sign up

Export Citation Format

Share Document