scholarly journals Finite-Time Switching Control of Nonholonomic Mobile Robots for Moving Target Tracking Based on Polar Coordinates

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Chen ◽  
Shen Xu ◽  
Lulu Chu ◽  
Fei Tong ◽  
Lei Chen

In this paper, finite-time tracking problem of nonholonomic mobile robots for a moving target is considered. First of all, polar coordinates are used to characterize the distance and azimuth between the moving target and the robot. Then, based on the distance and azimuth transported from the sensor installed on the robot, a finite-time tracking control law is designed for the nonholonomic mobile robot by the switching control method. Rigorous proof shows that the tracking error converges to zero in a finite time. Numerical simulation demonstrates the effectiveness of the proposed control method.

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Hua Chen ◽  
Lei Chen ◽  
Fei Tong

A finite-time switching control scheme is presented for tracking a practical moving target of extended nonholonomic chained-form systems. Firstly, a dynamic output tracking error model is proposed combining moving target and extended nonholonomic chained-form systems. Secondly, two decoupled subsystems are considered for the tracking error systems, based on which the rigorous convergence and stability analysis are proposed by applying the finite-time stability control theory and switching design methods. Finally, the effectiveness of the proposed finite-time switching control approach is performed according to the further simulation results.


2021 ◽  
Vol 11 (19) ◽  
pp. 9170
Author(s):  
Peng Xu ◽  
Jin Tao ◽  
Minyi Xu ◽  
Guangming Xie

This paper mainly investigates formation control problems for a group of anonymous mobile robots with unknown nonlinear disturbances on a plane, in which all robots can asymptotically converge to any formation patterns without collision, and maintain any required relative distance with neighboring robots. To solve this problem, all robots are modeled as kinematic points and can only acquire information from other robots and their targets. Furthermore, a flexible distributed control law is designed to solve the formation problem while no collisions between any robots can be guaranteed during the whole process. The outstanding feature of the proposed control method is that it can force all mobile robots to form not only uniform circle formations but also non-uniform and non-circular formations with moving target centers. At last, both theoretical analysis and numerical simulations show the feasibility of the proposed control law.


2018 ◽  
Vol 38 (5) ◽  
pp. 558-567 ◽  
Author(s):  
Hua Chen ◽  
Lei Chen ◽  
Qian Zhang ◽  
Fei Tong

Purpose The finite-time visual servoing control problem is considered for dynamic wheeled mobile robots (WMRs) with unknown control direction and external disturbance. Design/methodology/approach By using finite-time control method and switching design technique. Findings First, the visual servoing kinematic WMR model is developed, which can be converted to the dynamic chained-form systems by using a state and input feedback transformation. Then, for two decoupled subsystems of the chained-form systems, according to the finite-time stability control theory, a discontinuous three-step switching control strategy is proposed in the presence of uncertain control coefficients and external disturbance. Originality/value A class of discontinuous anti-interference control method has been presented for the dynamic nonholonomic systems.


Author(s):  
Vo Anh Tuan ◽  
Hee-Jun Kang

In this study, a new finite time control method is suggested for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting method. First, to avoid the singularity drawback and achieve the finite time convergence of positional errors with a fast transient response rate, nonsingular fast terminal sliding variables are constructed in the position errors' state space. Next, adaptive tuning laws based on the super-twisting scheme are presented for the switching control law of terminal sliding mode control (TSMC) so that a continuous control law is extended to reject the effects of chattering behavior. Finally, a new finite time control method ensures that sliding motion will take place, regardless of the effects of the perturbations and uncertainties on the robot system. Accordingly, the stabilization and robustness of the suggested control system can be guaranteed with high-precision performance. The robustness issue and the finite time convergence of the suggested system are totally confirmed by the Lyapunov stability principle. In simulation studies, the experimental results exhibit the effectiveness and viability of our proposed scheme for joint position tracking control of a 3DOF PUMA560 robot.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jin Cheng ◽  
Bin Wang

Flocking control problem of mobile robots under environment with unknown obstacles is addressed in this paper. Based on the simulated annealing algorithm, a flocking behaviour for mobile robots is achieved which converges to alignment while avoiding obstacles. Potential functions are designed to evaluate the positional relationship between robots and obstacles. Unlike the existing analytical method, simulated annealing algorithm is utilized to search the quasi-optimal position of robots in order to reduce the potential functions. Motion control law is designed to drive the robot move to the desired position at each sampling period. Experiments are implemented, and the results illustrate the effectiveness of the proposed flocking control method.


Author(s):  
Hua Chen ◽  
Chaoli Wang ◽  
Liu Yang ◽  
Dongkai Zhang

This paper investigates the semiglobal stabilization problem for nonholonomic mobile robots based on dynamic feedback with inputs saturation. A bounded, continuous, time-varying controller is presented such that the closed-loop system is semiglobally asymptotically stable. The systematic strategy combines finite-time control technique with the virtual-controller-tracked method, which is similar to the back-stepping procedure. First, the bound-constrained smooth controller is presented for the kinematic model. Second, the dynamic feedback controller is designed to make the generalized velocity converge to the prespecified kinematic (virtual) controller in a finite time. Furthermore, the rigorous proof is given for the stability analysis of the closed-loop system. In the mean time, the position and torque inputs of robots are proved to be bounded at any time. Finally, the simulation results show the effectiveness of the proposed control approach.


Sign in / Sign up

Export Citation Format

Share Document