scholarly journals Novel Verification Method for Timing Optimization Based on DPSO

VLSI Design ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Chuandong Chen ◽  
Rongshan Wei ◽  
Shaohao Wang ◽  
Wei Hu

Timing optimization for logic circuits is one of the key steps in logic synthesis. Extant research data are mainly proposed based on various intelligence algorithms. Hence, they are neither comparable with timing optimization data collected by the mainstream electronic design automation (EDA) tool nor able to verify the superiority of intelligence algorithms to the EDA tool in terms of optimization ability. To address these shortcomings, a novel verification method is proposed in this study. First, a discrete particle swarm optimization (DPSO) algorithm was applied to optimize the timing of the mixed polarity Reed-Muller (MPRM) logic circuit. Second, the Design Compiler (DC) algorithm was used to optimize the timing of the same MPRM logic circuit through special settings and constraints. Finally, the timing optimization results of the two algorithms were compared based on MCNC benchmark circuits. The timing optimization results obtained using DPSO are compared with those obtained from DC, and DPSO demonstrates an average reduction of 9.7% in the timing delays of critical paths for a number of MCNC benchmark circuits. The proposed verification method directly ascertains whether the intelligence algorithm has a better timing optimization ability than DC.

2018 ◽  
Vol 11 (1) ◽  
pp. 28-34 ◽  
Author(s):  
Chuandong Chen ◽  
◽  
Bing Lin ◽  
Michelle Zhu ◽  
◽  
...  

2014 ◽  
Vol 58 (6) ◽  
pp. 1306-1313 ◽  
Author(s):  
X. Wang ◽  
Y. Lu ◽  
Y. Zhang ◽  
Z. Zhao ◽  
T. Xia ◽  
...  

2005 ◽  
Vol 18 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Anas Al-Rabadi

Fundamentals of regular three-dimensional (3D) lattice circuits are introduced. Lattice circuits represent an important class of regular circuits that allow for local interconnections, predictable timing, fault localization, and self-repair. In addition, three-dimensional lattice circuits can be potentially well suited for future 3D technologies, such as nanotechnologies, where the intrinsic physical delay of the irregular and lengthy interconnections limits the device performance. Although the current technology does not offer a menu for the immediate physical implementation of the proposed three-dimensional circuits, this paper deals with three-dimensional logic circuit design from a fundamental and foundational level for a rather new possible future directions in designing digital logic circuits.


2021 ◽  
pp. 1-18
Author(s):  
Kirill Andreevich Popkov

The following statements are proved: 1) for any integer m ≥ 3 there is a basis consisting of Boolean functions of no more than m variables, in which any Boolean function can be implemented by a logic circuit of unreliable gates that self-corrects relative to certain faults in an arbitrary number of gates; 2) for any positive integer k there are bases consisting of Boolean functions of no more than two variables, in each of which any Boolean function can be implemented by a logic circuit of unreliable gates that self-correct relative to certain faults in no more than k gates; 3) there is a functionally complete basis consisting of Boolean functions of no more than two variables, in which almost no Boolean function can be implemented by a logic circuit of unreliable gates that self-correct relative to at least some faults in no more than one gate.


Sign in / Sign up

Export Citation Format

Share Document