scholarly journals A Piezoelectric-Driven Rock-Drilling Device for Extraterrestrial Subsurface Exploration

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
He Li ◽  
Yi Shen ◽  
Qingchuan Wang ◽  
Yinchao Wang ◽  
Deen Bai ◽  
...  

The rocks on extraterrestrial objects contain plenty of original geological and biological information. Drilling and sampling are an essential task in lunar exploration or future explorations of other planets like mars. Due to the limitation of payloads, energies, and drill pressure, the investigation of a lightweight and low-powered rock-drilling device is crucial for explorations of distant celestial bodies. The ultrasonic drill driven by piezoelectric ceramics is a new drilling device that can adapt to the arduous space rock-drilling tasks in weak gravitational fields. An ultrasonic drill suitable for mounting on a planetary rover’s robotic arm is developed. The ultrasonic transducer’s energy conversion from electric energy to acoustic energy and the energy transmission from the horn’s high-frequency vibration to the drill stem’s low-frequency impact motion are analyzed to guide the design of the drill. To deeply understand the percussive drilling mechanism under high-speed impact, the interaction between the drill stem and the rock is simulated using LS-DYNA software. Drilling experiments on rocks with different hardness grades are conducted. The experiment results illustrate that the ultrasonic drill can penetrate into the hard rocks only taking a force of 6 N and a power consumption of 15 W. The study of ultrasonic drill will provide a reference method for sample collection of extraterrestrial rocks.

Author(s):  
Ammar Lamraoui ◽  
Franck Richecoeur ◽  
Se´bastien Ducruix ◽  
Thierry Schuller

The present study investigates combustion instabilities generated in a turbulent swirled combustor featuring two non-harmonically related unstable modes. Sound pressure and chemiluminescence spectra show the presence of two peaks located around 180 Hz and 280 Hz during unstable operation. The low frequency acoustic response of the test-rig is then analyzed using a two-coupled-cavity model including a realistic impedance of the system at the premixer inlet. This analytical approach is used to link the two observed frequencies to the first chamber and premixer modes respectively. Analytical predictions are compared with acoustic pressure measurements to determine the structure of these modes. The Rayleigh source term in the energy balance is also computed and shows that the two modes feed acoustic energy simultaneously in the system. High-speed PIV data gathered under unstable operation are filtered around these two frequencies to obtain phase conditioned images. Results show that the unsteady flow in the flame region features distinct dynamics associated to a bulk longitudinal oscillation of the flow in the flame arms at 180 Hz and large wrinkles in the radial direction at 280 Hz.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1548
Author(s):  
Jiuling Hu ◽  
Lianjin Hong ◽  
Lili Yin ◽  
Yu Lan ◽  
Hao Sun ◽  
...  

At present, high-speed underwater acoustic communication requires underwater transducers with the characteristics of low frequency and broadband. The low-frequency transducers also are expected to be low-frequency directional for realization of point-to-point communication. In order to achieve the above targets, this paper proposes a new type of flextensional transducer which is constructed of double mosaic piezoelectric ceramic rings and spherical cap metal shells. The transducer realizes broadband transmission by means of the coupling between radial vibration of the piezoelectric rings and high-order flexural vibration of the spherical cap metal shells. The low-frequency directional transmission of the transducer is realized by using excitation signals with different amplitude and phase on two mosaic piezoelectric rings. The relationship between transmitting voltage response (TVR), resonance frequency and structural parameters of the transducer is analyzed by finite element software COMSOL. The broadband performance of the transducer is also optimized. On this basis, the low-frequency directivity of the transducer is further analyzed and the ratio of the excitation signals of the two piezoelectric rings is obtained. Finally, a prototype of the broadband ring flextensional underwater transducer is fabricated according to the results of simulation. The electroacoustic performance of the transducer is tested in an anechoic water tank. Experimental results show that the maximum TVR of the transducer is 147.2 dB and the operation bandwidth is 1.5–4 kHz, which means that the transducer has good low-frequency, broadband transmission capability. Meanwhile, cardioid directivity is obtained at 1.4 kHz and low-frequency directivity is realized.


2011 ◽  
Vol 680 ◽  
pp. 114-149 ◽  
Author(s):  
ZORANA ZERAVCIC ◽  
DETLEF LOHSE ◽  
WIM VAN SAARLOOS

In this paper the collective oscillations of a bubble cloud in an acoustic field are theoretically analysed with concepts and techniques of condensed matter physics. More specifically, we will calculate the eigenmodes and their excitabilities, eigenfrequencies, densities of states, responses, absorption and participation ratios to better understand the collective dynamics of coupled bubbles and address the question of possible localization of acoustic energy in the bubble cloud. The radial oscillations of the individual bubbles in the acoustic field are described by coupled linearized Rayleigh–Plesset equations. We explore the effects of viscous damping, distance between bubbles, polydispersity, geometric disorder, size of the bubbles and size of the cloud. For large enough clusters, the collective response is often very different from that of a typical mode, as the frequency response of each mode is sufficiently wide that many modes are excited when the cloud is driven by ultrasound. The reason is the strong effect of viscosity on the collective mode response, which is surprising, as viscous damping effects are small for single-bubble oscillations in water. Localization of acoustic energy is only found in the case of substantial bubble size polydispersity or geometric disorder. The lack of localization for a weak disorder is traced back to the long-range 1/r interaction potential between the individual bubbles. The results of the present paper are connected to recent experimental observations of collective bubble oscillations in a two-dimensional bubble cloud, where pronounced edge states and a pronounced low-frequency response had been observed, both consistent with the present theoretical findings. Finally, an outlook to future possible experiments is given.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 466
Author(s):  
Aimable Kalume ◽  
Chuji Wang ◽  
Yongle Pan

We present a broad assessment on the studies of optically-trapped single airborne aerosol particles, particularly chemical aerosol particles, using laser technologies. To date, extensive works have been conducted on ensembles of aerosols as well as on their analogous bulk samples, and a decent general description of airborne particles has been drawn and accepted. However, substantial discrepancies between observed and expected aerosols behavior have been reported. To fill this gap, single-particle investigation has proved to be a unique intersection leading to a clear representation of microproperties and size-dependent comportment affecting the overall aerosol behavior, under various environmental conditions. In order to achieve this objective, optical-trapping technologies allow holding and manipulating a single aerosol particle, while offering significant advantages such as contactless handling, free from sample collection and preparation, prevention of contamination, versatility to any type of aerosol, and flexibility to accommodation of various analytical systems. We review spectroscopic methods that are based on the light-particle interaction, including elastic light scattering, light absorption (cavity ring-down and photoacoustic spectroscopies), inelastic light scattering and emission (Raman, laser-induced breakdown, and laser-induced fluorescence spectroscopies), and digital holography. Laser technologies offer several benefits such as high speed, high selectivity, high accuracy, and the ability to perform in real-time, in situ. This review, in particular, discusses each method, highlights the advantages and limitations, early breakthroughs, and recent progresses that have contributed to a better understanding of single particles and particle ensembles in general.


Sign in / Sign up

Export Citation Format

Share Document