scholarly journals Meaningful Image Encryption Based on Reversible Data Hiding in Compressive Sensing Domain

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ming Li ◽  
Haiju Fan ◽  
Hua Ren ◽  
Dandan Lu ◽  
Di Xiao ◽  
...  

A novel method of meaningful image encryption is proposed in this paper. A secret image is encrypted into another meaningful image using the algorithm of reversible data hiding (RDH). High covertness can be ensured during the communication, and the possibility of being attacked of the secret image would be reduced to a very low level. The key innovation of the proposed method is that RDH is applied to compressive sensing (CS) domain, which brings a variety of benefits in terms of image sampling, communication and security. The secret image after preliminary encryption is embedded into the sparse representation coefficients of the host image with the help of the dictionary. The embedding rate could reach 2 bpp, which is significantly higher than those of other state-of-art schemes. In addition, the computational complexity of receiver is reduced. Simulations verify our proposal.

2014 ◽  
Vol 6 (3) ◽  
pp. 16-29
Author(s):  
Xiyu Han ◽  
Zhenxing Qian ◽  
Guorui Feng ◽  
Xinpeng Zhang

This paper proposes a novel method for data hiding in encrypted image using image interpolation. Before the image encryption, the original image is sampled and an interpolation algorithm is used to calculate an estimation of the original image. Errors between the original image and the estimated image are compressed by Huffman encoding, which are further embedded into the estimated image to generate the redundant room. After image encryption using an encryption key, the secret bits are embedded into the reserved room. On the receiver side, the hidden bits can be extracted and the original content of the image can be perfectly recovered. Compared with the published results, the proposed method provides a larger embedding payload.


2021 ◽  
Vol 22 (2) ◽  
Author(s):  
V. M. Manikandan

The research in the domain of reversible data hiding got much attention in recent years due to its wide applications in medical image transmission and cloud computing.  Reversible data hiding during image encryption is a recently emerged framework for hiding secret data into an image during the image encryption process. In this manuscript, we propose a new reversible data hiding through encryption scheme which will ensure a high embedding rate without bringing any additional overhead of key handling. The proposed algorithm can use any secure symmetric encryption scheme, and the encryption and/or decryption key should be shared with the receiver for data extraction and image recovery. As per the proposed scheme, the data hider can hide three-bits of secret message in an image block of size $B\times B$ pixels. The data extraction image recovery will be carried out by analyzing the closeness between adjacent pixels. The simulation of the new scheme on the USC-SIPI dataset shows that the proposed scheme outperforms the well-known existing schemes in embedding rate and bit error rate.


Computers ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 86
Author(s):  
Jijun Wang ◽  
Soo Fun Tan

Separable Reversible Data Hiding in Encryption Image (RDH-EI) has become widely used in clinical and military applications, social cloud and security surveillance in recent years, contributing significantly to preserving the privacy of digital images. Aiming to address the shortcomings of recent works that directed to achieve high embedding rate by compensating image quality, security, reversible and separable properties, we propose a two-tuples coding method by considering the intrinsic adjacent pixels characteristics of the carrier image, which have a high redundancy between high-order bits. Subsequently, we construct RDH-EI scheme by using high-order bits compression, low-order bits combination, vacancy filling, data embedding and pixel diffusion. Unlike the conventional RDH-EI practices, which have suffered from the deterioration of the original image while embedding additional data, the content owner in our scheme generates the embeddable space in advance, thus lessening the risk of image destruction on the data hider side. The experimental results indicate the effectiveness of our scheme. A ratio of 28.91% effectively compressed the carrier images, and the embedding rate increased to 1.753 bpp with a higher image quality, measured in the PSNR of 45.76 dB.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Ching-Yu Yang

This paper proposes a novel form of reversible data hiding using two marked images by employing the adaptive coefficient-shifting (ACS) algorithm. The proposed ACS algorithm consists of three parts: the minimum-preserved scheme, the minimum-preserved with squeezing scheme, and the base-value embedding scheme. More specifically, each input block of a host image can be encoded to two stego-blocks according to three predetermined rules by the above three schemes. Simulations validate that the proposed method not only completely recovers the host medium but also losslessly extracts the hidden message. The proposed method can handle various kinds of images without any occurrence of overflow/underflow. Moreover, the payload and peak signal-to-noise ratio (PSNR) performance of the proposed method is superior to that of the conventional invertible data hiding schemes. Furthermore, the number of shadows required by the proposed method is less than that required by the approaches which are based upon secret image sharing with reversible steganography.


2014 ◽  
Vol 6 (4) ◽  
pp. 1-13 ◽  
Author(s):  
Qi Tang ◽  
Guoli Ma ◽  
Weiming Zhang ◽  
Nenghai Yu

As the blueprint of vital activities of most living things on earth, DNA has important status and must be protected perfectly. And in current DNA databases, each sequence is stored with several notes that help to describe that sequence. However, these notes have no contribution to the protection of sequences. In this paper, the authors propose a reversible data hiding method for DNA sequences, which could be used either to embed sequence-related annotations, or to detect and restore tampers. When embedding sequence annotations, the methods works in low embedding rate mode. Only several bits of annotations are embedded. When used for tamper detection and tamper restoration, all possible embedding positions are utilized to assure the maximum restoration capacity.


2018 ◽  
Vol 6 (1) ◽  
pp. 64-68
Author(s):  
V. M. Manikandan ◽  
◽  
V. Masilamani

2019 ◽  
Vol 78 (18) ◽  
pp. 25707-25729 ◽  
Author(s):  
R. Ponuma ◽  
R. Amutha ◽  
S. Aparna ◽  
Gayatri Gopal

Sign in / Sign up

Export Citation Format

Share Document