scholarly journals Optimal Scheduling of a Microgrid Including Pump Scheduling and Network Constraints

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Ashok Krishnan ◽  
L. P. M. I. Sampath ◽  
Y. S. Foo Eddy ◽  
H. B. Gooi

This paper proposes an efficient energy management system (EMS) for industrial microgrids (MGs). Many industries deploy large pumps for their processes. Oftentimes, such pumps are operated during hours of peak electricity prices. A lot of industries use a mix of captive generation and imported utility electricity to meet their energy requirements. The MG considered in this paper includes diesel generators, battery energy storage systems, renewable energy sources, flexible loads, and interruptible loads. Pump loads found in shipyard dry docks are modelled as exemplar flexible industrial loads. The proposed EMS has a two-stage architecture. An optimal MG scheduling problem including pump scheduling and curtailment of interruptible loads (ILs) is formulated and solved in the first stage. An optimal power flow problem is solved in the second stage to verify the feasibility of the MG schedule with the network constraints. An iterative procedure is used to coordinate the two EMS stages. Multiple case studies are used to demonstrate the utility of the proposed EMS. The case studies highlight the efficacy of load management strategies such as pump scheduling and curtailment of ILs in reducing the total electricity cost of the MG.

2020 ◽  
Vol 10 (12) ◽  
pp. 4388 ◽  
Author(s):  
Sergio Saponara ◽  
Roberto Saletti ◽  
Lucian Mihet-Popa

This editorial manuscript reviews the papers accepted for publication in the Special Issue “DC & Hybrid Microgrids” of Applied Sciences. This Special Issue, co-organized by the University of Pisa, Italy and Østfold University College in Norway, has collected nine papers from 25 submitted, with authors from Asia, North America and Europe. The published articles provide an overview of the most recent research advances in direct current (DC) and hybrid microgrids, exploiting the opportunities offered by the use of renewable energy sources, battery energy storage systems, power converters, innovative control and energy management strategies.


2022 ◽  
Vol 48 ◽  
pp. 103803
Author(s):  
Markus Mühlbauer ◽  
Fabian Rang ◽  
Herbert Palm ◽  
Oliver Bohlen ◽  
Michael A. Danzer

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2503
Author(s):  
Paulo Rotella Junior ◽  
Luiz Célio Souza Rocha ◽  
Sandra Naomi Morioka ◽  
Ivan Bolis ◽  
Gianfranco Chicco ◽  
...  

Sources such as solar and wind energy are intermittent, and this is seen as a barrier to their wide utilization. The increasing grid integration of intermittent renewable energy sources generation significantly changes the scenario of distribution grid operations. Such operational challenges are minimized by the incorporation of the energy storage system, which plays an important role in improving the stability and the reliability of the grid. This study provides the review of the state-of-the-art in the literature on the economic analysis of battery energy storage systems. The paper makes evident the growing interest of batteries as energy storage systems to improve techno-economic viability of renewable energy systems; provides a comprehensive overview of key methodological possibilities for researchers interested in economic analysis of battery energy storage systems; indicates the need to use adequate economic indicators for investment decisions; and identifies key research topics of the analyzed literature: (i) photovoltaic systems with battery energy storage systems for residential areas, (ii) comparison between energy storage technologies, (iii) power quality improvement. The last key contribution is the proposed research agenda.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3520
Author(s):  
Iflah Javeed ◽  
Rahmat Khezri ◽  
Amin Mahmoudi ◽  
Amirmehdi Yazdani ◽  
G. M. Shafiullah

This paper investigates a comparative study for practical optimal sizing of rooftop solar photovoltaic (PV) and battery energy storage systems (BESSs) for grid-connected houses (GCHs) by considering flat and time-of-use (TOU) electricity rate options. Two system configurations, PV only and PV-BESS, were optimally sized by minimizing the net present cost of electricity for four options of electricity rates. A practical model was developed by considering grid constraints, daily supply of charge of electricity, salvation value and degradation of PV and BESS, actual annual data of load and solar, and current market price of components. A rule-based energy management system was examined for GCHs to control the power flow among PV, BESS, load, and grid. Various sensitivity analyses are presented to examine the impacts of grid constraint and electricity rates on the cost of electricity and the sizes of the components. Although the capacity optimization model is generally developed for any case study, a grid-connected house in Australia is considered as the case system in this paper. It is found that the TOU-Flat option for the PV-BESS configuration achieved the lowest NPC compared to other configuration and options. The optimal capacities of rooftop PV and BESS were obtained as 9 kW and 6 kWh, respectively, for the PV-BESS configuration with TOU-Flat according to two performance metrices: net present cost and cost of electricity.


2020 ◽  
Vol 34 (01) ◽  
pp. 630-637 ◽  
Author(s):  
Ferdinando Fioretto ◽  
Terrence W.K. Mak ◽  
Pascal Van Hentenryck

The Optimal Power Flow (OPF) problem is a fundamental building block for the optimization of electrical power systems. It is nonlinear and nonconvex and computes the generator setpoints for power and voltage, given a set of load demands. It is often solved repeatedly under various conditions, either in real-time or in large-scale studies. This need is further exacerbated by the increasing stochasticity of power systems due to renewable energy sources in front and behind the meter. To address these challenges, this paper presents a deep learning approach to the OPF. The learning model exploits the information available in the similar states of the system (which is commonly available in practical applications), as well as a dual Lagrangian method to satisfy the physical and engineering constraints present in the OPF. The proposed model is evaluated on a large collection of realistic medium-sized power systems. The experimental results show that its predictions are highly accurate with average errors as low as 0.2%. Additionally, the proposed approach is shown to improve the accuracy of the widely adopted linear DC approximation by at least two orders of magnitude.


Author(s):  
Kaspars Kroics ◽  
Oleksandr Husev ◽  
Kostiantyn Tytelmaier ◽  
Janis Zakis ◽  
Oleksandr Veligorskyi

<p>Battery energy storage systems are becoming more and more popular solution in the household applications, especially, in combination with renewable energy sources. The bidirectional AC-DC power electronic converter have great impact to the overall efficiency, size, mass and reliability of the storage system. This paper reviews the literature that deals with high efficiency converter technologies for connecting low voltage battery energy storage to an AC distribution grid. Due to low voltage of the battery isolated bidirectional AC-DC converter or a dedicated topology of the non isolated converter is required. Review on single stage, two stage power converters and integrated solutions are done in the paper.</p>


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5913
Author(s):  
Wei Sun ◽  
Sam Harrison ◽  
Gareth P. Harrison

It is imperative to increase the connectable capacity (i.e., hosting capacity) of distributed generation in order to decarbonise electricity distribution networks. Hybrid generation that exploits complementarity in resource characteristics among different renewable types potentially provides value for minimising technical constraints and increasing the effective use of the network. Tidal, wave and wind energy are prominent offshore renewable energy sources. It is of importance to explore their potential complementarity for increasing network integration. In this work, the novel introduction of these distinct offshore renewable resources into hosting capacity evaluation enables the quantification of the benefits of various resource combinations. A scenario reduction technique is adapted to effectively consider variation of these renewables in an AC optimal power flow-based nonlinear optimisation model. Moreover, the beneficial impact of active network management (ANM) on enhancing the renewable complementarity is also investigated. The combination of complementary hybrid generation and ANM, specifically where the maxima of the generation profiles rarely co-occur with each other and with the demand minimum, is found to make the best use of the network components.


Sign in / Sign up

Export Citation Format

Share Document