scholarly journals Upper Bound Analysis for Collapse Failure of Shield Tunnel Face Excavated in Unsaturated Soils Considering Steady Vertical Flow

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jia-hua Zhang ◽  
Wei-jun Wang ◽  
Biao Zhang ◽  
Dao-bing Zhang

Natural soils are mostly in an unsaturated state and the corresponding mechanical properties differ significantly from a saturated one. In traditional stability analysis for a shield tunnel face, the soil mass is typically assumed to be dry or saturated for convenience of analysis. In this work, based on the upper bound theorem of classical plasticity theory and the log-spiral failure mechanism, face stability of the shield tunnel excavated in unsaturated soils under vertical steady flow is studied. The profile of shear strength is determined by virtues of the unified effective stress approach and the analytical solution of matric suction under unsaturated steady flow. On this basis, the analytical expression for the supporting pressure is deduced and the sequential quadratic programming is employed to search for the optimal upper bound solution. Through parametric analysis it is found the fitting parameters of SWCC and the groundwater level affect the supporting pressure notably. Besides, the relevant influence of vertical discharge is also significant when clayey soils are concerned.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yuyou Yang ◽  
Qinghong Zhou ◽  
Hongan Li ◽  
Xuegang Huang ◽  
Xiaoming Tu

This paper focuses on the face stability analysis of Double-O-Tube shield tunnel. This kind of analysis is significant to ensure the safety of workers and reduce the influence on the surrounding environment. The key point of the stability analysis is to determine the supporting pressure applied to the face by the shield. A collapse failure will occur when the supporting pressure is not sufficient to prevent the movement of the soil mass towards the tunnel. A three-dimensional collapse failure mechanism was presented in this paper. Based on the mechanism of a single circular shield tunnel, the mechanism of Double-O-Tube shield tunnel was established by using the fact that both of the mechanisms are symmetrical. Then by means of the kinematic theorem of limit analysis, the numerical results were obtained, and a design chart was provided. The finite difference software FLAC3D was applied to investigate the face failure mechanism of DOT shield tunnel established in this paper; the critical supporting pressures of the collapse failure mechanism in different strata (sand and silt) were calculated. Through comparative analysis, the theoretical values were very close to the numerical values. This shows that the face failure mechanism of DOT shield tunnel is reasonable, and it can be applied to the sand and silt strata.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Xilin Lu ◽  
Haoran Wang ◽  
Maosong Huang

By FE simulation with Mohr-Coulomb perfect elastoplasticity model, the relationship between the support pressure and displacement of the shield tunnel face was obtained. According to the plastic strain distribution at collapse state, an appropriate failure mechanism was proposed for upper bound limit analysis, and the formula to calculate the limit support pressure was deduced. The limit support pressure was rearranged to be the summation of soil cohesionc, surcharge loadq, and soil gravityγmultiplied by their corresponding coefficientsNc,Nq, andNγ, and parametric studies were carried out on these coefficients. In order to consider the influence of seepage on the face stability, the pore water pressure distribution and the seepage force on the tunnel face were obtained by FE simulation. After adding the power of seepage force into the equation of the upper bound limit analysis, the total limit support pressure for stabilizing the tunnel face under seepage condition was obtained. The total limit support pressure was shown to increase almost linearly with the water table.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Fu Huang ◽  
Zai-lan Li ◽  
Tong-hua Ling

A method to evaluate the stability of tunnel face is proposed in the framework of upper bound theorem. The safety factor which is widely applied in slope stability analysis is introduced to estimate the stability of tunnel face using the upper bound theorem of limit analysis in conjunction with a strength reduction technique. Considering almost all geomaterials following a nonlinear failure criterion, a generalized tangential technique is used to calculate the external work and internal energy dissipation in the kinematically admissible velocity field. The upper bound solution of safety factor is obtained by optimization calculation. To evaluate the validity of the method proposed in this paper, the safety factor is compared with those calculated by limit equilibrium method. The comparison shows the solutions derived from these two methods match each other well, which shows the method proposed in this paper can be considered as effective.


Sign in / Sign up

Export Citation Format

Share Document