supporting pressure
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Masoud Forsat ◽  
Mohammad Taghipoor ◽  
Masoud Palassi

AbstractThe present research exposes the investigation on three-dimensional modeling of the single and twin metro tunnels for the case of the Tehran metro line. At first, simulation implemented on the comparison of the ground movements in the single and twin tunnels. Then the simulation has been performed on the influence of effective parameters of EPB-TBM on the surface settlements throughout excavation. The overcutting, shield conicity, grouting, and the final lining system modeled and the influence of face supporting pressure, grout injection pressure, as well as the clear distance of the tunnels, has been analyzed. The initial results showed a valid ground settlement behavior. The maximum settlements occurred at the end of the shield tail and it was higher in the single tunnel. The face supporting pressure had more effect on the surface settlement in comparison to the grout injection pressure. By increasing the face pressure in the single tunnel, the place of maximum settlement moved back while the grout pressure is insignificant for decreasing the settlements. Furthermore, the influence of the clear distance in the twin tunnels led to zero after the length of 30 m. Accordingly, for more distances, the tunnels must be examined independently and as two different single tunnels.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Kefan Yang ◽  
Youmin Wang ◽  
Kexun Fu

The hydraulic bulging technology of tubes can provide hollow parts with special-shaped cross sections. Its manufacturing process can effectively improve material utilization and product accuracy and reduce the number and cost of molds. However, the hydraulic bulging process of parts is very complicated. The size of the tube blank, the design of the loading route, and the forming process parameters will have an effect on the molding quality. Closed tubular torsion automobile beam is considered as the research object to study hydraulic bulging die design and optimize forming process parameters. CATIA software is used to design torsion beam product structure and hydraulic bulging die. AMESim software is employed to design hydraulic synchronous control system for cylinders on both sides of the hydraulic bulging die. Mathematical control model is established and verified in Simulink software. DYNAFORM software is applied to conduct numerical simulation of hydraulic expansion. The supporting pressure, molding pressure, friction coefficient, and feeding quantity are taken as orthogonal experiment level factors. Maximum thinning and maximum thickening rates are taken as hydraulic pressure expansion evaluation indexes to complete the orthogonal experiments. Main molding process parameters are analyzed via orthogonal experiment results and optimized by employing the Taguchi method. Optimal hydraulic bulging parameters are obtained as follows: supporting pressure of 20 MPa, molding pressure of 150 MPa, feeding quantity of 25 mm, and friction coefficient of 0.075. Simulation analysis results indicate that the maximum thinning rate is equal to 9.013%, while the maximum thickening rate is equal to 16.523%. Finally, the design of hydraulic bulging die for torsion beam was completed, and its forming process parameters were optimized.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Biao Zhang ◽  
Huaqiang Zhou ◽  
Qingliang Chang ◽  
Xu Zhao ◽  
Yuantian Sun

Based on geological conditions of 3318 working face haulage roadway in Xuchang Coal Mine, as well as the space-time relationship with surrounding gob, theoretical analysis and numerical simulation were used to study the influence of fault structure on the original rock stress of 3318 working face transport roadway. Considering the composite action of the leading supporting pressure of 3318 working face and the structure and the lateral supporting pressure of gob, the stress distribution and deformation law of roadway under the complex and high-stress condition are studied. The results show that, under the superposition of lateral abutment pressure of goaf and abutment pressure of adjacent working face and fault structure, the peak stress of roadway roof and floor moves to the surface of roadway surrounding rock, and its distribution law changes from obvious symmetry to asymmetry; surrounding rock on both sides of roadway forms asymmetric circular concentrated stress area; roof and floor and two sides of roadway show asymmetric characteristics. This reveals the stability characteristics of roadway surrounding rock under the action of multiple perturbation stresses.


2020 ◽  
Vol 10 (18) ◽  
pp. 6526 ◽  
Author(s):  
Zhengzheng Xie ◽  
Nong Zhang ◽  
Jin Wang ◽  
Zhe Xiang ◽  
Chenghao Zhang

With the characteristics of gradual instability in the supporting pressure area of roadway as the engineering background, this paper aims to explore the evolution law of pore and fracture in the coal sample under progressive loads. The low-field nuclear magnetic resonance (NMR) test was designed and conducted with the coal sample under different axial loads (0, 3, 5, 7, 9, and 11 MPa). The characteristic parameters such as the porosity, the pore size distribution, the transverse relaxation time (T2) distribution curve, and the magnetic resonance image (MRI) were obtained. As the test results show, significant difference in the NMR characteristics of the coal samples can be observed throughout the compaction stage and the elastic stage. In the compaction stage, the porosity of the coal samples decreases slightly; the T2 distribution curve moves to the smaller value as a whole, and the percolation pore (PP) displays a tendency to transform to the adsorption pore (AP). In the elastic stage, the porosity of the coal samples rises gradually as the load increases; the T2 distribution curve moves to the larger value as a whole, and the AP tends to transform to the PP. The MRI shows that some pores and fissures in the coal sample close up and disappear as the load increases gradually, while the main pores and fissures expand and perforate till the macro failure occurs. Compared with one-time loading, the progressive multiple loads can ensure the fracture of the coal sample to develop more fully and the damage degree higher. It indirectly reflects that the instability and failure of the coal under the progressive load has the stage characteristics, verifying that the coal in the supporting pressure area needs to be controlled in advance.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Wulin Lei ◽  
Jing Chai ◽  
Dingding Zhang ◽  
Yibo Ouyang ◽  
Zhe Ma ◽  
...  

In order to study the regularity of overburden deformation and mining pressure changes in the stope. Take the geological conditions of Hanglaiwan coal mine in Yushen mining area as the background, a 3000 mm×1340 mm×200 mm physical similar material model was established in laboratory. Eight fiber Bragg grating sensors were embedded in the model, used to monitor the movement and deformation of the overburden key stratum and the change of mining abutment pressure in real time and then to determine the influencing factors and strain transfer coefficients of the fiber grating through theoretical analysis and calibration experiments. The results show the following. (1) The changes in value, position, and shape of the strain can reflect the dynamic evolution process of bending deformation, breaking, and rotation of the key strata. When the key layer breaks for the first time, the strain curve shows a peak shape; when the key layer breaks periodically, the strain curve of the fiber grating sensor showed a plateau shape for a period of time. (2) The strain curve has a good corresponding relationship with the change in supporting pressure. When the strain curve of the fiber Bragg grating sensor was at the trough stage, the abutment pressure was at the peak stage, with the increase of sensor buried height, and the supporting pressure and the strain value had a linear relationship within the range of the advanced abutment pressure. The conclusion shows that the fiber Bragg grating sensor monitoring technology has good effect on the internal strain and key supporting pressure monitoring of the overburden in the model test; it provides new monitoring methods and means for the model tests.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Hong-tao Wang ◽  
Chi Liu ◽  
Ping Liu ◽  
Xin Zhang ◽  
Yong Yang

Determination of the required supporting pressure is the premise of tunnel support design. Only when the support design meets the requirements can the tunnel be safe and stable during construction and operation. This paper focuses on a shallow tunnel in layered rock strata and proposes a method for predicting the required supporting pressure. In this method, the 2D and 3D failure mechanisms are constructed, respectively. The analytical solutions of the supporting pressure corresponding to the two cases are derived on the basis of upper bound theorem and Hoek–Brown failure criterion. Then, the proposed method is validated by comparing with the results of existing research studies. Furthermore, a shallow tunnel in two-layer rock strata is chosen to illustrate the difference between the two solutions. The comparison shows that the supporting pressure in the 2D case is greater than that in the 3D case in general and it tends to be conservative for tunnel design. Conversely, the 3D solution may help to reduce the support cost. Furthermore, the change laws of the supporting pressure and failure range corresponding to varying parameters are obtained. These results may practically provide theoretical references for tunnel support design in layered rock strata.


2020 ◽  
Vol 10 (11) ◽  
pp. 3746
Author(s):  
Chao Liu ◽  
Zhuohua Peng ◽  
Liufeng Pan ◽  
Hai Liu ◽  
Yubing Yang ◽  
...  

This study investigates the influence of subsequent tunnel boring machine (TBM)-driven processes on the responses of the first tunnel in twin-tunnel construction using the ultra-rapid underground pass (URUP) method. A comprehensive finite element analysis (FEA) is performed to simulate the URUP TBM tunneling, considering the non-uniform convergence caused by the TBM geometry, the tunnel face supporting pressure, and the tail-grouting pressure. The FEA model is validated by the monitoring results of the bending element of the first tunnel lining. The FEA results reveal that the grouting pressure of the second tunnel has significant influence on lining deformation of the first tunnel, while the face supporting pressure shows little effect. The relationship between the grouting pressure and the maximum bending moment of adjacent first tunnel can be fitted by linear function. A grouting pressure equals to the lateral earth pressure is able the reduce the variation of the bending element of the first tunnel during the TBM-driven process of the second tunnel. The bending element of the first tunnel shows a typical lognormal relationship with the face supporting pressure during the TBM advance of the second tunnel. A critical cover-to-depth ratio, under which the horizontal and vertical soil arching effect vanishes, can be deduced to be within the range of 0.55–0.60.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0217351
Author(s):  
Hong-tao Wang ◽  
Xiao-jing Li ◽  
Ping Liu ◽  
Xin Zhang ◽  
Lu-yao Liu

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jia-hua Zhang ◽  
Wei-jun Wang ◽  
Biao Zhang ◽  
Dao-bing Zhang

Natural soils are mostly in an unsaturated state and the corresponding mechanical properties differ significantly from a saturated one. In traditional stability analysis for a shield tunnel face, the soil mass is typically assumed to be dry or saturated for convenience of analysis. In this work, based on the upper bound theorem of classical plasticity theory and the log-spiral failure mechanism, face stability of the shield tunnel excavated in unsaturated soils under vertical steady flow is studied. The profile of shear strength is determined by virtues of the unified effective stress approach and the analytical solution of matric suction under unsaturated steady flow. On this basis, the analytical expression for the supporting pressure is deduced and the sequential quadratic programming is employed to search for the optimal upper bound solution. Through parametric analysis it is found the fitting parameters of SWCC and the groundwater level affect the supporting pressure notably. Besides, the relevant influence of vertical discharge is also significant when clayey soils are concerned.


Sign in / Sign up

Export Citation Format

Share Document