scholarly journals A New Intelligent Fault Diagnosis Method of Rotating Machinery under Varying-Speed Conditions Using Infrared Thermography

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yongbo Li ◽  
Xianzhi Wang ◽  
Shubin Si ◽  
Xiaoqiang Du

A novel systematic framework, infrared thermography- (IRT-) based method, for rotating machinery fault diagnosis under nonstationary running conditions is presented in this paper. In this framework, IRT technique is first applied to obtain the thermograph. Then, the fault features are extracted using bag-of-visual-word (BoVW) from the IRT images. In the end, support vector machine (SVM) is utilized to automatically identify the fault patterns of rotating machinery. The effectiveness of proposed method is evaluated using lab experimental signal of rotating machinery. The diagnosis results show that the IRT-based method has certain advantages in classification rotating machinery faults under nonstationary running conditions compared with the traditional vibration-based method.

2010 ◽  
Vol 121-122 ◽  
pp. 813-818 ◽  
Author(s):  
Wei Guo Zhao ◽  
Li Ying Wang

On the basis of wavelet packet-characteristic entropy(WP-CE) and multiclass fuzzy support vector machine(MFSVM), the author proposes a new fault diagnosis method of vibrating of hearings,in which three layers wavelet packet decomposition of the acquired vibrating signals of hearings is performed and the wavelet packet-characteristic entropy is extracted,the eigenvector of wavelet packet of the vibrating signals is constructed,and taking this eigenvector as fault sample multiclass fuzzy support vector machine is trained to implement the intelligent fault diagnosis. The simulation result from the proposed method is effective and feasible.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ling Shu ◽  
Jinxing Shen ◽  
Xiaoming Liu

With a view to solving the defect that multiscale amplitude-aware permutation entropy (MAAPE) can only quantify the low-frequency features of time series and ignore the high-frequency features which are equally important, a novel nonlinear time series feature extraction method, hierarchical amplitude-aware permutation entropy (HAAPE), is proposed. By constructing high and low-frequency operators, this method can extract the features of different frequency bands of time series simultaneously, so as to avoid the issue of information loss. In view of its advantages, HAAPE is introduced into the field of fault diagnosis to extract fault features from vibration signals of rotating machinery. Combined with the pairwise feature proximity (PWFP) feature selection method and gray wolf algorithm optimization support vector machine (GWO-SVM), a new intelligent fault diagnosis method for rotating machinery is proposed. In our method, firstly, HAPPE is adopted to extract the original high and low-frequency fault features of rotating machinery. After that, PWFP is used to sort the original features, and the important features are filtered to obtain low-dimensional sensitive feature vectors. Finally, the sensitive feature vectors are input into GWO-SVM for training and testing, so as to realize the fault identification of rotating machinery. The performance of the proposed method is verified using two data sets of bearing and gearbox. The results show that the proposed method enjoys obvious advantages over the existing methods, and the identification accuracy reaches 100%.


Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 98
Author(s):  
Haodong Yuan ◽  
Nailong Wu ◽  
Xinyuan Chen ◽  
Yueying Wang

The vibration signal of rotating machinery fault is a periodic impact signal and the fault characteristics appear periodically. The shift invariant K-SVD algorithm can solve this problem effectively and is thus suitable for fault feature extraction of rotating machinery. With the over-complete dictionary learned by the training samples, including thedifferent classes, shift invariant sparse feature for the training as well as test samples can be formed through sparse codes and employed as the input of classifier. A support vector machine (SVM) with optimized parameters has been extensively used in intelligent diagnosis of machinery fault. Hence, in this study, a novel fault diagnosis method of rolling bearings using shift invariant sparse feature and optimized SVM is proposed. Firstly, dictionary learning by shift invariant K-SVD algorithm is conducted. Then, shift invariant sparse feature is constructed with the learned over-complete dictionary. Finally, optimized SVM is employed for classification of the shift invariant sparse feature corresponding to different classes, hence, bearing fault diagnosis is achieved. With regard to the optimized SVM, three methods including grid search, generic algorithm (GA), and particle swarm optimization (PSO) are respectively carried out. The experiment results show that the shift invariant sparse feature using shift invariant K-SVD can effectively distinguish the bearing vibration signals corresponding to different running states. Moreover, optimized SVM can significantly improve the diagnosis precision.


Sign in / Sign up

Export Citation Format

Share Document