scholarly journals Automated Conversion of Building Information Modeling (BIM) Geometry Data for Window Thermal Performance Simulation

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Changmin Kim ◽  
Changyoung Park ◽  
Changho Choi ◽  
Hyangin Jang

A window set is defined as a window where the frame and the glass are combined and is used at the part that comes into contact with the air. As the performance evaluation of window sets has gained significance, the need for software that can simulate window set performance has also increased accordingly. However, the simulation of window sets is not carried out efficiently due to the difficulty in the window set modeling. Meanwhile, the design of building information modeling has recently proliferated so that the window set BIM library is distributed online. If such a window set BIM library is utilized in the window set simulation, it is expected that the productivity issue that occurs in the simulation process could be improved. Therefore, this study proposes a method to automatically convert the information required in the simulation of the window set heat transfer coefficient from the BIM. In order to achieve the purpose of this study, the following procedure is carried out. First, the framework for converting the information required in the simulation of the window set heat transfer coefficient from the BIM is suggested. Second, the method to extract and convert BIM data based on the suggested framework is proposed. Lastly, the BIM data conversion program is developed, and its performance is validated by applying the window set BIM case. The case study result showed that the information converted and entered from the window set data BIM conversion program coincided with the information entered in the window set BIM. It is expected that the result of this study will increase the productivity of window set simulations, which will lead to the increased use of certification through these simulations.

2021 ◽  
Vol 13 (14) ◽  
pp. 7990
Author(s):  
Suman Paneru ◽  
Forough Foroutan Jahromi ◽  
Mohsen Hatami ◽  
Wilfred Roudebush ◽  
Idris Jeelani

Traditional energy analysis in Building Information Modeling (BIM) only accounts for the energy requirements of building operations during a portion of the occupancy phase of the building’s life cycle and as such is unable to quantify the true impact of buildings on the environment. Specifically, the typical energy analysis in BIM does not account for the energy associated with resource formation, recycling, and demolition. Therefore, a comprehensive method is required to analyze the true environmental impact of buildings. Emergy analysis can offer a holistic approach to account for the environmental cost of activities involved in building construction and operation in all its life cycle phases from resource formation to demolition. As such, the integration of emergy analysis with BIM can result in the development of a holistic sustainability performance tool. Therefore, this study aimed at developing a comprehensive framework for the integration of emergy analysis with existing Building Information Modeling tools. The proposed framework was validated using a case study involving a test building element of 8’ × 8’ composite wall. The case study demonstrated the successful integration of emergy analysis with Revit®2021 using the inbuilt features of Revit and external tools such as MS Excel. The framework developed in this study will help in accurately determining the environmental cost of the buildings, which will help in selecting environment-friendly building materials and systems. In addition, the integration of emergy into BIM will allow a comparison of various built environment alternatives enabling designers to make sustainable decisions during the design phase.


2020 ◽  
Vol 27 (9) ◽  
pp. 2409-2427
Author(s):  
Honglei Liu ◽  
Jiule Song ◽  
Guangbin Wang

PurposeWith the increasing attention acquired from researchers and practitioners in Architecture, Engineering and Construction (AEC) industry, building information modeling (BIM) has fundamentally changed the approach we design, construct and delivery, as well as operate and maintenance of buildings and civil infrastructures. This study tries to provide an innovative perspective on BIM research. This study aims to analyze the necessity and feasibility of BIM user satisfaction research and define what BIM user satisfaction is, and then to develop a quantitative method for the measurement of BIM user satisfaction.Design/methodology/approachAs it is indicated in the content, BIM user satisfaction is measured by the sum of the user's weighted reactions to a set of factors. To be specific, the entropy method was adopted to calculate the “weighting” of the factors, and the triangular fuzzy number (TFN) method was selected to compute the “scoring” of the factors. Through the literature review, methodology and tool development, as well as case study and discussions, this paper was generated sequentially.FindingsThis study found that the proposed tool for the measurement of BIM success is valid and reliable; it formerly translated the conceptual definition of BIM user satisfaction into an accurate measurement instrument. It also indicated that many factors are affecting the BIM users' satisfaction, and each of the factors inherited various importance and score, and the findings are expected to improve the performance and effectiveness of BIM management.Originality/valueThrough the translation of the conceptual BIM user satisfaction into a valid quantitative measurement instrument, this research provides an excellent framework for the management of BIM from the user's perspective, and it could help to stimulate user's acceptance of BIM in the AEC industry in future.


2010 ◽  
Vol 41 (1) ◽  
pp. 31-41
Author(s):  
Bryce M. Burnside ◽  
Bodius Salam ◽  
David A. McNeil

In condensation over horizontal tubes where the wall temperature is not measured directly, the Wilson plot is used to determine the cooling side heat transfer coefficient. Conventionally, the variation in Nusselt number, Nu, with condensate side temperature drop, DTs, which accompanies change of cooling side flowrate, is assumed to be Nu µ 1/DTsn with n = 0.25. This is the free convention condensation value. In this paper a technique is devised, not only to check the accuracy of this assumption in the usual vapor side cross flow situation, but also to determine the effect on this accuracy of allowing the index n to vary. In a case study the best agreement between DTs assumed and the value obtained using the cooling side heat transfer coefficient which resulted from the Wilson plot, occurred at n = 0.21. Based on the random errors in the measured data, a linear regression taking into account the errors in both Wilson plot coordinates gave the cooling side heat transfer coefficient and its uncertainty.Keywords: Heat transfer; condensation; Wilson plots.DOI: 10.3329/jme.v41i1.5360Journal of Mechanical Engineering, Vol. ME 41, No. 1, June 2010 31-41


2020 ◽  
Vol 202 ◽  
pp. 02012
Author(s):  
Moh Nur Sholeh ◽  
Shifa Fauziyah ◽  
Riqi Radian Khasani

Building Information Modeling (BIM) is an interesting study to be explored by technological developments. Especially with the Covid-19 pandemic, construction actors are encouraged to work according to the applicable protocol. BIM as integrated tool for managing projects from the beginning to the end of the work. On one side the classic problems of construction projects are high costs, late time, and quality that is not according to specifications. The purpose of this study is to analyze the effect of the use of BIM in construction projects on time and cost. A case study was carried out on a construction project that had implemented BIM. The results showed the use of BIM could cut time by 50% faster and reduce costs by 52.36%. This time and cost-effectiveness are caused by the number of workers needed and the reduced duration so that it has an impact on fundin.


Sign in / Sign up

Export Citation Format

Share Document