scholarly journals Shake Table Response of Unreinforced Masonry and Reinforced Concrete Elements of Special Moment Resisting Frame

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Syed Azmat Ali Shah ◽  
Junaid Shah Khan ◽  
Syed Muhammad Ali ◽  
Khan Shahzada ◽  
Waqar Ahmad ◽  
...  

Half-scaled reinforced concrete frame of two storeys and two bays with unreinforced masonry (URM) infill walls was subjected to base excitation on a shake table for seismic performance evaluation. Considering the high seismic hazard Zone IV of Pakistan, reinforcement detailing in the RC frame is provided according to special moment resisting frames (SMFRs) requirement of Building Code of Pakistan Seismic-Provisions (BCP SP-2007). The reinforced concrete frame was infilled with in-plane solid masonry walls in its interior frame, in-plane masonry walls with door and window openings in the exterior frame, out-of-plane solid masonry wall, and masonry wall with door and window openings in its interior frame. For seismic capacity qualification test, the structure was subjected to three runs of unidirectional base excitation with increasing intensity. For system identification, ambient-free vibration tests were performed at different stages of experiment. Seismic performance of brick masonry infill walls in reinforced concrete frame structures was evaluated. During the shake table test, performance of URM infill walls was satisfactory until design ground acceleration was 0.40g with a global drift of 0.23%. The test was continued till 1.24g of base acceleration. This paper presents key findings from the shake table tests, including the qualitative damage observations and quantitative force-displacement, and hysteretic response of the test specimen at different levels of excitation. Experimental results of this test will serve as a benchmark for validation of numerical and analytical models.

1999 ◽  
Vol 26 (5) ◽  
pp. 606-617 ◽  
Author(s):  
A C Heidebrecht ◽  
N Naumoski

This paper describes an investigation into the seismic performance of a six-storey ductile moment-resisting frame structure located in Vancouver and designed and detailed in accordance with the seismic provisions of the National Building Code of Canada (1995). Both pushover and dynamic analyses are conducted using an inelastic model of the structure as designed and detailed. The structural performance of a number of design variations is evaluated using interstorey drift and member curvature ductility response as performance measures. All frames studied are expected to perform at an operational level when subjected to design level seismic excitations and to meet life safe performance criteria at excitations of twice the design level.Key words: seismic, building, frames, ductile, design, performance, reinforced concrete, code.


2020 ◽  
Vol 10 (20) ◽  
pp. 7061 ◽  
Author(s):  
Kyong Min Ro ◽  
Min Sook Kim ◽  
Young Hak Lee

Buildings constructed with non-seismic details are at risk of damage and collapse when an earthquake occurs due to a lack of strength, stiffness, and ductility. For reinforced concrete (RC) moment-resisting frames, seismic retrofitting methods that can enhance strength or ductility should be applied. However, such strategies have many disadvantages related to constructability, serviceability, securing integrity, and cost. In this paper, a welded concrete-filled steel tube (WCFST) system was examined in order to resolve the problems of the existing seismic retrofitting methods for RC moment-resisting frames. To evaluate the seismic performance of the proposed system, two specimens, one with non-seismic details and another reinforced with a WCFST seismic system, were manufactured for the cyclic loading tests. As a result of the experiments, the specimen retrofitted with the WCFST system showed maximum load, effective stiffness, and energy dissipation capacity values approximately 3, 2, and 2.5 times greater, respectively, than those obtained from the existing reinforced concrete frame specimen. The experimental results indicate that the proposed WCFST system is expected to be effective at improving the seismic performance by enhancing both the strength of the existing reinforced concrete frame structures and the dissipation of the seismic energy.


2017 ◽  
Vol 23 (3) ◽  
pp. 444-462 ◽  
Author(s):  
Naveed Ahmad ◽  
Asif Shahzad ◽  
Muhammad Rizwan ◽  
Akhtar Naeem Khan ◽  
Syed Muhammad Ali ◽  
...  

2016 ◽  
Vol 711 ◽  
pp. 982-988
Author(s):  
Alex Brodsky ◽  
David Z. Yankelevsky

Numerous studies have been conducted on the in plane behavior of masonry infill walls to lateral loading simulating earthquake action on buildings. The present study is focused on a problem that has almost not been studied regarding the vertical (opposed to lateral) in-plane action on these walls. This may be of concern when a supporting column of a multi-storey reinforced concrete frame with infill masonry walls undergoes a severe damage due to an extreme loading such as a strong earthquake, car impact or military or terror action in proximity to the column. The loss of the supporting column may cause a fully or partly progressive collapse to a bare reinforced concrete frame, without infill masonry walls. The presence of the infill masonry walls may restrain the process and prevent the development of a progressive collapse. The aim of the present study is to test the in-plane composite action of Reinforced Concrete (RC) frames with infill masonry walls under vertical loading through laboratory experiments and evaluate the contributions of infill masonry walls, in an attempt to examine the infill masonry wall added resistance to the bare frame under these circumstances. Preliminary results of laboratory tests that have been conducted on reinforced concrete infilled frames without a support at their end, under monotonic vertical loading along that column axis will be presented. The observed damages and failure modes under vertical loading are clearly different from the already known failure modes observed in the case of lateral loading.


Sign in / Sign up

Export Citation Format

Share Document