scholarly journals Effect of Variable Thermal Conductivity on the Generalized Thermoelasticity Problems in a Fiber-Reinforced Anisotropic Half-Space

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Chun-Bao Xiong ◽  
Li-Na Yu ◽  
Yan-Bo Niu

Fiber-reinforced materials have widespread applications, which prompt the study of the effect of fiber reinforcement. Research studies have indicated that thermal conductivity cannot be considered as a constant, which is closely related to temperature change. Based on those studies, we investigate the fiber-reinforced generalized thermoelasticity problem under thermal stress, with the consideration of the effect of temperature-dependent variable thermal conductivity. The problem is assessed according to the L-S theory. A fiber-reinforced anisotropic half-space is selected as the research model, and a region of its surface is subjected to a transient thermal shock. The time-domain finite element method is applied to analyze the nonlinear problem and derives the governing equations. The nondimensional displacement, stress, and temperature of the material are obtained and illustrated graphically. The numerical results reveal that the variable conductivity significantly influences the distribution of the field quantities under the fiber-reinforced effect. And also, the boundary point of thermal shock is the most affected. The obtained results in this paper can be applied to design the fiber-reinforced anisotropic composites under thermal load to satisfy some particular engineering requirements.

2018 ◽  
Vol 06 (03n04) ◽  
pp. 1850006
Author(s):  
Ashraf M. Zenkour

The thermoelastic problem of clamped axisymmetric infinite hollow cylinders under thermal shock with variable thermal conductivity is presented. The outer surface of infinite hollow cylinder is considered to be thermally insulated while inner surface is subjected to an initial heating source. In addition, the cylinder is considered to be clamped at its inner and outer radii. Generalized thermoelasticity theories are used to deal with the field quantities. All generalized thermoelasticity theories such as Green and Lindsay, Lord and Shulman, and coupled thermoelasticity (CTE) are considered as special cases of the present theory. Effects of variable thermal conductivity and time parameters on radial displacement, temperature, and stresses of the hollow cylinders are investigated.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1230
Author(s):  
Faris Alzahrani

In this work, the generalized photo-thermo-elastic model with variable thermal conductivity is presented to estimates the variations of temperature, the carrier density, the stress and the displacement in a semiconductor material. The effects of variable thermal conductivity under photo-thermal transport process is investigated by using the coupled model of thermoelastic and plasma wave. The surface of medium is loaded by uniform unit step temperature. Easily, the analytical solutions in the domain of Laplace are obtained. By using Laplace transforms with the eigenvalue scheme, the fields studied are obtained analytically and presented graphically.


Sign in / Sign up

Export Citation Format

Share Document