Journal of Molecular and Engineering Materials
Latest Publications


TOTAL DOCUMENTS

157
(FIVE YEARS 23)

H-INDEX

10
(FIVE YEARS 1)

Published By World Scientific

2251-2381, 2251-2373

Author(s):  
Lili Feng ◽  
Pengyu Wang ◽  
Hansen Yang ◽  
Zhuo Chen ◽  
Shuhui Bo

A charge transfer dye with the D–[Formula: see text]–A structure was synthesized by Pd catalyzed Hartwig–Buchwald coupling and Knoevenagel condensation reaction, using N, N-dihexylbenzo[b]thiophen-6-amine as donor and 2-(3-cyano-4, 5, 5-trimethylfuran-2 (5H)-ylidene)malononitrile (TCF) as acceptor. The solvatochromic and pH switch properties of the as-synthesized dye were investigated through UV-vis absorption and fluorescence emission spectra. A positive solvatochromism of the dye in different polar solvents was observed along with a visible color change of the solution. By adding acid/base into the DMSO solution of the dye, the color as well as the absorption and emission spectra of the solution exhibited outstanding characteristics of pH switch.


Author(s):  
Vikram G. Kamble ◽  
Punyapriya Mishra ◽  
Hassan A. Al Dabbas ◽  
H. S. Panda ◽  
Johnathan Bruce Fernandez

Author(s):  
Xiulin Yang ◽  
Defei Liu ◽  
Shenghong Zhong ◽  
Xiaofeng Zhou ◽  
Kuo-Wei Huang ◽  
...  

Selective conversion of CO2 to formate with high current densities is highly desirable but still challenging. Copper hollow fibers with interconnected pore structures were fabricated via a facile method and used as a stand-alone cathode for highly efficient electrochemical reduction of CO2 to formate. Our studies revealed that delivering the reactant CO2 gas to the inner space of the hollow fiber could build up a higher CO2 partial pressure in the pores and presumably reduce the concentration of H[Formula: see text] from the electrolyte to effectively suppress the major competing reaction, hydrogen evolution reaction (HER), from 46.9% faradaic efficiency (FE) to 15.0%. A high selectivity for CO2 reduction to formate with a maximum FE of 77.1% was achieved with a high current density of 34.7[Formula: see text]mA cm[Formula: see text], which is one of the highest FEs on Cu-based materials. Mechanistic studies suggest that the abundant active sites along with the unique crystal facets induced by the high pressure of CO2 at the pore surface in the “gas in” mode are attributed to the superior electroactivity and selectivity for the CO2 reduction to formate. The Cu hollow fiber electrodes exhibit an outstanding long-term stability at high current density, showing great potential for large-scale practical applications.


2021 ◽  
Vol 09 (01n02) ◽  
Author(s):  
Bellal Sadouki ◽  
Hadj Benhebal ◽  
Bedhiaf Benrabah ◽  
Abdelmalek Kharroubi

Thin films of Co-doped [Formula: see text]-MnO2 have been deposited on Pyrex glass substrates by the sol–gel dip-coating method with Co concentrations of 1, 3, 5 and 7 at.%. The deposited thin films were characterized for their structural, morphological, optical and electrical properties. The XRD spectra confirm that all the samples have tetragonal phase of [Formula: see text]-MnO2. FTIR spectra reveal the presence of Mn–O in all of the samples. AFM measurements indicate that the surfaces of films have been affected with cobalt content incorporation. Transmittance spectra of the undoped and Co-doped MnO2 thin films were recorded by a UV–vis spectrometer. Optical gap was found to be in the 2.60–2.51-eV scale. This decrease is due to the presence of manganese vacancies and/or oxygen defects. From the complex impedance measurements that show semicircular arcs at different cobalt contents, an equivalent parallel [Formula: see text] electrical circuit has been proposed.


Author(s):  
Kousik Das ◽  
Soumyajit Roy

Multi-component hybrid materials are intriguing. They have the potential to act as a platform to manifest the properties of their components. In this review, we discuss the catalytic applications of few such hybrids that are based on oxometalates (OMs). Due to the structural flexibility and enormous properties, OMs are unrivaled in the field of catalysis. Thus, here we primarily focus on the synthesis and catalysis of such OM-based hybrids. The present overview shows that it is possible to improve the catalytic property of bare oxometalates and even that of their soft-matter state namely soft-oxometalates (SOMs) through rational choice of organic ligand and oxometalates.


Author(s):  
Madhuri Soni ◽  
M. Saleem ◽  
Ashutosh Mishra

The well-known ferroelectric and dielectric materials based on barium titanate (BaTiO3) with the compositional formula Ba[Formula: see text]AEMxTiO3 [[Formula: see text] and AEM (alkaline earth metal) [Formula: see text] Ca and Sr] denoted as BTO, BCTO and BSTO are reported in this work. The solid-state reaction method was used to synthesize these titanates. The as-synthesized samples were characterized for structural elucidation via X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), Raman inelastic scattering, energy dispersive analysis of X-rays (EDAX) and field emission scanning electron microscopy (FESEM). In addition to this, the samples were studied for optical bandgap, dielectric constant, dielectric loss, ac conductivity and polarization ([Formula: see text]–[Formula: see text]) studies. The XRD data analysis revealed that all the samples have acquired a tetragonal structure (P4mm) and are single phased. The Rietveld refinement of Ba[Formula: see text]Ca[Formula: see text]TiO3 confirms XRD results. In FTIR spectra, the absorption modes appearing at about 400[Formula: see text]cm[Formula: see text] and 500[Formula: see text]cm[Formula: see text] are attributes of the vibration of Ti–O bonds and Ba–O bonds, confirming the formation of desired samples. The appearance of the Raman mode of vibration at about 310[Formula: see text]cm[Formula: see text] is an indication of the tetragonal phase. FESEM micrographs of Ba[Formula: see text]Ca[Formula: see text]TiO3 reveal grain growth in the range of about 1[Formula: see text][Formula: see text]m and its EDAX spectrum confirms the composition of the sample. The optical bandgap was found to be 3.35[Formula: see text]eV, 3.1[Formula: see text]eV and 2.65[Formula: see text]eV for pristine, Ca[Formula: see text]- and Sr[Formula: see text]-doped BaTiO3, respectively. Frequency-dependent dielectric studies infer the samples to be extremely good dielectrics in nature with very low loss values. Polarization against a field at 1000[Formula: see text]V witnesses the samples to exhibit low polarization effects with lossy character. The dielectric and [Formula: see text]–[Formula: see text] behavior of Ba[Formula: see text]Sr[Formula: see text]TiO3 was found exceptional among all the reported titanates.


Author(s):  
Swarnapriya Thiyagarajan ◽  
M. A. Vallejo ◽  
P. Cerón ◽  
C. Gomez-Solis ◽  
C. Wiechers ◽  
...  

Lithium tetraborate (LTB) was doped with copper (0.1%) to enhance the LTB thermoluminescent (TL) properties. A graphene reducing atmosphere was used to increase the vacancies of oxygen in the crystalline structure. LTB:Cu [Formula: see text] PTFE (polytetrafluoroethylene) pellets were prepared by mixing the Li2B4O7:Cu with PTFE in a 4:1 ratio. The obtained materials were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Crystals of Li2B4O7 with the average size of 134[Formula: see text]nm were obtained. The presence of copper was confirmed by SEM. The TL response of LTB:Cu PTFE pellets was studied with [Formula: see text] radiation by using a [Formula: see text]Co source. TTL response shows a linear behavior depending on the radiation dose. The effect of annealing time on TL glow curve was analyzed from 2[Formula: see text]h to 10[Formula: see text]h by irradiating with X-rays. The effect of mass on the TL response was studied varying the mass of the sample from 10[Formula: see text]mg to 50[Formula: see text]mg. From various heating rate studies, it was observed that the TL intensity increased when heating rate was gradually increased. The kinetic parameters were calculated by using computer deconvolution methods. The dosimetric property results showed that this material could have good potential application in a radiation dosimeter for radiation therapy treatment in the medical field.


2020 ◽  
Vol 08 (01n02) ◽  
pp. 2050002
Author(s):  
Leena Rani

A three-phase-lag model of a homogeneous thermally conducting orthorhombic thermoviscoelastic material under the effect of the dependence of reference temperature on all elastic and thermal parameters is investigated. The Laplace and Fourier transform and eigenvalue approach techniques are used to solve the resulting nondimensional coupled equations. As an application of the problem, harmonically varying and sinusoidal pulse functions are considered. Numerical results for the field quantities are given in the physical domain and illustrated graphically. Comparisons are made for thermoviscoelastic temperature dependent, thermoviscoelastic and thermoelastic materials, respectively, for different values of time, for temperature gradient boundary.


Sign in / Sign up

Export Citation Format

Share Document