scholarly journals New Insights on Properties and Spatial Distributions of Skeletal Stem Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Jun-qi Liu ◽  
Qi-wen Li ◽  
Zhen Tan

Skeletal stem cells (SSCs) are postnatal self-renewing, multipotent, and skeletal lineage-committed progenitors that are capable of giving rise to cartilage, bone, and bone marrow stroma including marrow adipocytes and stromal cells in vitro and in an exogenous environment after transplantation in vivo. Identifying and isolating defined SSCs as well as illuminating their spatiotemporal properties contribute to our understating of skeletal biology and pathology. In this review, we revisit skeletal stem cells identified most recently and systematically discuss their origin and distributions.

1999 ◽  
Vol 10 (2) ◽  
pp. 165-181 ◽  
Author(s):  
P.H. Krebsbach ◽  
S.A. Kuznetsov ◽  
P. Bianco ◽  
P. Gehron Robey

The bone marrow stroma consists of a heterogeneous population of cells that provide the structural and physiological support for hematopoietic cells. Additionally, the bone marrow stroma contains cells with a stem-cell-like character that allows them to differentiate into bone, cartilage, adipocytes, and hematopoietic supporting tissues. Several experimental approaches have been used to characterize the development and functional nature of these cells in vivo and their differentiating potential in vitro. In vivo, presumptive osteogenic precursors have been identified by morphologic and immunohistochemical methods. In culture, the stromal cells can be separated from hematopoietic cells by their differential adhesion to tissue culture plastic and their prolonged proliferative potential. In cultures generated from single-cell suspensions of marrow, bone marrow stromal cells grow in colonies, each derived from a single precursor cell termed the colony-forming unit-fibroblast. Culture methods have been developed to expand marrow stromal cells derived from human, mouse, and other species. Under appropriate conditions, these cells are capable of forming new bone after in vivo transplantation. Various methods of cultivation and transplantation conditions have been studied and found to have substantial influence on the transplantation outcome The finding that bone marrow stromal cells can be manipulated in vitro and subsequently form bone in vivo provides a powerful new model system for studying the basic biology of bone and for generating models for therapeutic strategies aimed at regenerating skeletal elements.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1395-1395
Author(s):  
Morayma Reyes ◽  
Jeffrey S. Chamberlain

Abstract Multipotent Adult Progenitor Cells (MAPC) are bone marrow derived stem cells that can be extensively expanded in vitro and can differentiate in vivo and in vitro into cells of all three germinal layers: ectoderm, mesoderm, endoderm. The origin of MAPC within bone marrow (BM) is unknown. MAPC are believed to be derived from the BM stroma compartment as they are isolated within the adherent cell component. Numerous studies of bone marrow chimeras in human and mouse point to a host origin of bone marrow stromal cells, including mesenchymal stem cells. We report here that following syngeneic bone marrow transplants into lethally irradiated C57Bl/6 mice, MAPC are of donor origin. When MAPC were isolated from BM chimeras (n=12, 4–12 weeks post-syngeneic BM transplant from a transgenic mouse ubiquitously expressing GFP), a mixture of large and small GFP-positive and GFP-negative cells were seen early in culture. While the large cells stained positive for stroma cell markers (smooth muscle actin), mesenchymal stem cell makers (CD73, CD105, CD44) or macrophages (CD45, CD14), the small cells were negative for all these markers and after 30 cell doublings, these cells displayed the classical phenotype of MAPC (CD45−,CD105−, CD44−, CD73−, FLK-1+(vascular endothelial growth factor receptor 2, VEGFR2), Sca-1+,CD13+). In a second experiment, BM obtained one month post BM transplant (n=3) was harvested and mononuclear cells were sorted as GFP-positive and GFP-negative cells and were cultured in MAPC expansion medium. MAPC grew from the GFP-positive fraction. These GFP positive cells displayed the typical MAPC-like immunophenotypes, displayed a normal diploid karyotype and were expanded for more than 50 cell doublings and differentiated into endothelial cells, hepatocytes and neurons. To rule out the possibility that MAPC are the product of cell fusion between a host and a donor cell either in vivo or in our in vitro culture conditions, we performed sex mismatched transplants of female GFP donor BM cells into a male host. BM from 5 chimeras were harvested 4 weeks after transplant and MAPC cultures were established. MAPC colonies were then sorted as GFP-positive and GFP- negative and analyzed for the presence of Y-chromosome by FISH analysis. As expected all GFP-negative (host cells) contained the Y-chromosome whereas all GFP-positive cells (donor cells) were negative for the Y-chromosome by FISH. This proves that MAPC are not derived from an in vitro or in vivo fusion event. In a third study, BM mononuclear cells from mice that had been previously BM-transplanted with syngeneic GFP-positive donors (n=3) were transplanted into a second set of syngeneic recipients (n=9). Two months after the second transplant, BM was harvested and mononuclear cells were cultured in MAPC medium. The secondary recipients also contained GFP-positive MAPC. This is the first demonstration that BM transplantation leads to the transfer of cells that upon isolation in vitro generate MAPCs and, whatever the identity of this cell may be, is eliminated by irradiation. We believe this is an important observation as MAPC hold great clinical potential for stem cell and/or gene therapy and, thus, BM transplant may serve as a way to deliver and reconstitute the MAPC population. In addition, this study provides insight into the nature of MAPC. The capacity to be transplantable within unfractionated BM transplant renders a functional and physiological distinction between MAPC and BM stromal cells. This study validates the use of unfractionated BM transplants to study the nature and possible in vivo role of MAPC in the BM.


1992 ◽  
Vol 17 (2) ◽  
pp. 299-300
Author(s):  
D.R. Diduch ◽  
M.R. Coe ◽  
C. Joyner ◽  
M.E. Owen ◽  
M.E. Bolander ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2191-2191
Author(s):  
Ryosuke Shirasaki ◽  
Haruko Tashiro ◽  
Yoko Oka ◽  
Toshihiko Sugao ◽  
Nobu Akiyama ◽  
...  

Abstract Abstract 2191 Poster Board II-168 Aims: The stroma-forming cells in a bone marrow are derived from hematopoietic stem cells. We reported previously that non-adherent leukemia blast cells converted into myofibroblasts to create a microenvironment for proliferation of leukemia blasts in vitro. In this report we demonstrate that with severe combined immunodeficiency (SCID) mouse system chronic myelogenous leukemia (CML) cells are also differentiated into myofibroblasts to contribute to a bone marrow-stroma in vivo. Materials and Methods: Bone marrow cells were collected from informed CML patients, from which mononuclear cells were separated with density-gradient sedimentation method. After discarded an adherent cell-fraction, non-adherent mononuclear cells were injected to the priory 2.5 Gray-irradiated non-obese diabetes (NOD)/SCID mice intravenously. For the inactivation of NK cells, anti-Asialo GM1 antibody was injected intra-peritoneally prior to the transplantation, and on each 11th day thereafter. Blood was collected to monitor Bcr-Abl transcript, and mice were sacrificed after chimeric mRNA was demonstrated. Bone marrow cells were obtained, and sorted with anti-human CD133 antibody and -CD106 to select CML-derived human stromal myofibroblasts referred to the in vitro data. The isolated positive fraction was further cultured, and the biological and the molecular characteristics were analyzed. Results and Discussion: When non-adherent CML cells were transplanted to NOD/SCID mice, CML cells were engrafted after 2 months. In the murine bone marrow human stromal cells were identified, in which BCR and ABL gene was fused with FISH analysis. When the parental CML cells were cultured on the CML-derived myofibroblasts, CML cells grew extensively in a vascular endothelial growth factor-A-dependent fashion. These results indicate that CML cells can create their own microenvironment for proliferation in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3866-3866
Author(s):  
Masao Tsukada ◽  
Satoshi Yamazaki ◽  
Yasunori Ota ◽  
Hiromitsu Nakauchi

Abstract Introduction Generation of engraftable hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) has long been thought an ultimate goal in the field of hematology. Numerous in vitro differentiation protocols, including trans-differentiation and forward programming approaches, have been reported but have so far failed to generate fully functional HSCs. We have previously demonstrated proof-of-concept for the in vivo generation of fully functional HSCs from induced PSCs (iPSCs) through teratoma formation (Suzuki et al., 2013). However, this method is time-consuming (taking over two months), HSCs are generated at low frequencies, and additionally require co-injection on OP9 stromal cells and SCF/TPO cytokines. Here, we present optimization of in vivo HSC generation via teratoma formation for faster, higher-efficiency HSC generation and without co-injection of stromal cells or cytokines. Results First, we screened reported in vitro trans-differentiation and forward programming strategies for their ability to generate HSCs in vivo within the teratoma assay. We tested iPSCs transduced with the following dox-inducible TF overexpression vectors: (1) Gfi1b, cFOS and Gata2 (GFG), which induce hemogenic endothelial-like cells from fibroblast (Pereira et al.,2013); (2) Erg, HoxA9 and Rora (EAR), which induce short-term hematopoietic stem/progenitor cell (HSPC) formation during embryoid body differentiation (Doulatov et,al., 2013); and (3) Foxc1, which is highly expressed the CAR cells, a critical cell type for HSC maintenance (Oomatsu et al.,2014). We injected iPSCs into recipient mice, without co-injection of stromal cells or cytokines, and induced TF expression after teratoma formation by dox administration. After four weeks, GFG-derived teratomas contained large numbers of endothelial-like and epithelial-like cells, and importantly GFG-derived hematopoietic cells could also be detected. EAR-teratomas also generated hematopoietic cells, although at lower frequencies. By contrast, hematopoietic cells were not detected in control teratomas or Foxc1-teratomas. Through use of iPSCs generated from Runx1-EGFP mice (Ng et al. 2010), and CUBIC 3D imaging technology (Susaki et al. 2014), we were further able to demonstrate that GFG-derived hematopoietic cells were generated through a haemogenic endothelium precursor. Next, we assessed whether HSPC-deficient recipient mice would allow greater expansion of teratoma-derived HSCs. This was achieved by inducing c-kit deletion within the hematopoietic compartment of recipient mice (Kimura et al., 2011) and resulted in a ten-fold increase in the peripheral blood frequency of iPSC-derived hematopoietic cells. We further confirmed similar increases in iPSC-derived bone marrow cells, and in vivo HSC expansion, through bone marrow transplantation assays. Finally, we have been able to shorten the HSC generation time in this assay by five weeks through use of transplantable teratomas, rather than iPSCs. Conclusions We have demonstrated that GFG-iPSCs induce HSC generation within teratomas, via a hemogenic endothelium precursor, and that use of HSPC-deficient recipient mice further promotes expansion of teratoma-derived HSCs. These modifications now allow us to generate engraftable HSCs without co-injection of stromal cells or cytokines. Additionally, use of transplantable teratomas reduced HSC generation times as compared with the conventional assay. These findings suggest that our in vivo system provides a promising strategy to generate engraftable HSCs from iPSCs. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1981 ◽  
Vol 57 (4) ◽  
pp. 771-780
Author(s):  
RS Schwartz ◽  
PL Greenberg

In order to evaluate the role of the stromal bone marrow microenvironment in regulating granulopoiesis, we have examined the capacity of adult human proximal hemopoietic (PH) and distal nonhemopoietic (DNH) long bone to produce colony-stimulating activity (CSA), characterized the cellular sources of CSA, and quantitated the colony-forming cells (CFU-GM) of marrow from these sites. Stromal elements were obtained from slices of cancellous bone. PH bone marrow stroma contained CFU-GM concentrations similar to aspirated PH marrow and significantly more CFU-GM than DNH bone marrow: 20.7 +/- 4.8/10(5) cells and 25.8 +/- 12.0/mg bone versus 0.81 +/- 0.34/10(5) cells and 0.02 +/- 0.01/mg bone (p less than 0.001). Conditioned media prepared from PH and DNH bone were quantitated for CSA by their ability to promote in vitro granulocyte colony formation of nonadherent human marrow cells. Stromal CSA production was destroyed by freeze--thawing and was radioresistant (4400 rad). Of DNH stromal cells, 15%--30% were monocyte-macrophage, but the slow absolute numbers of these cells suggested alternative CSA cellular sources in distal bones. PH stroma produced significantly more CSA than DNH bone stroma: 0.72 +/- 0.10 versus 0.30 +/- 0.06 U/mg bone (p less than 0.01). The CSA concentration gradient between PH and DNH bones may contribute to the regulation of granulopoiesis in marrow and to the absence of hemopoiesis distally.


Blood ◽  
1981 ◽  
Vol 57 (4) ◽  
pp. 771-780 ◽  
Author(s):  
RS Schwartz ◽  
PL Greenberg

Abstract In order to evaluate the role of the stromal bone marrow microenvironment in regulating granulopoiesis, we have examined the capacity of adult human proximal hemopoietic (PH) and distal nonhemopoietic (DNH) long bone to produce colony-stimulating activity (CSA), characterized the cellular sources of CSA, and quantitated the colony-forming cells (CFU-GM) of marrow from these sites. Stromal elements were obtained from slices of cancellous bone. PH bone marrow stroma contained CFU-GM concentrations similar to aspirated PH marrow and significantly more CFU-GM than DNH bone marrow: 20.7 +/- 4.8/10(5) cells and 25.8 +/- 12.0/mg bone versus 0.81 +/- 0.34/10(5) cells and 0.02 +/- 0.01/mg bone (p less than 0.001). Conditioned media prepared from PH and DNH bone were quantitated for CSA by their ability to promote in vitro granulocyte colony formation of nonadherent human marrow cells. Stromal CSA production was destroyed by freeze--thawing and was radioresistant (4400 rad). Of DNH stromal cells, 15%--30% were monocyte-macrophage, but the slow absolute numbers of these cells suggested alternative CSA cellular sources in distal bones. PH stroma produced significantly more CSA than DNH bone stroma: 0.72 +/- 0.10 versus 0.30 +/- 0.06 U/mg bone (p less than 0.01). The CSA concentration gradient between PH and DNH bones may contribute to the regulation of granulopoiesis in marrow and to the absence of hemopoiesis distally.


Haemopoietic stem cells in vivo proliferate and develop in association with stromal cells of the bone marrow. Proliferation and differentiation of haemopoietic stem cells also occurs in vitro , either in association with stromal cells or in response to soluble growth factors. Many of the growth factors that promote growth and development of haemopoietic cells in vitro have now been molecularly cloned and purified to homogeneity and various techniques have been described that allow enrichment (to near homogeneity) of multipotential stem cells. This in turn, has facilitated studies at the mechanistic level regarding the role of such growth factors in self-renewal and differentiation of stem cells and their relevance in stromal-cell mediated haemopoiesis. Our studies have shown that at least some multipotential cells express receptors for most, if not all, of the haemopoietic cell growth factors already characterized and that to elicit a response, several growth factors often need to be present at the same time. Furthermore, lineage development reflects the stimuli to which the cells are exposed, that is, some stimuli promote differentiation and development of multipotential cells into multiple cell lineages, whereas others promote development of multipotential cells into only one cell lineage. We suggest that, in the bone marrow environment, the stromal cells produce or sequester different types of growth factors, leading to the formation of microenvironments that direct cells along certain lineages. Furthermore, a model system has been used to show the possibility that the self-renewal probability of multipotential cells can also be modulated by the range and concentrations of growth factors present in the environment. This suggests that discrete microenvironments, preferentially promoting self-renewal rather than differentiation of multipotential cells, may also be provided by marrow stromal cells and sequestered growth factors.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4774-4774
Author(s):  
Sana Usmani ◽  
Olena Tkachencko ◽  
Leti Nunez ◽  
Craig A. Mullen

Abstract Background: Bone marrow stroma provides a favorable microenvironmental niche for ALL cell survival. We and others have demonstrated that bone marrow stromal cells contribute to prevention of apoptosis in ALL cells. Objective: Identify potentially "drug-able" molecules derived from marrow stromal cells that contribute to prevention of ALL cell apoptosis. Methods: We have developed an in vitro system to identify stromal gene products that deliver antiapoptotic signals to ALL cells. Primary human ALL cells are co-cultured with human bone marrow stromal cells. We manipulate stromal cells with siRNA directed against candidate stromal cell genes. Two days later the siRNA is washed out of culture and primary ALL cells are added to the stromal cells. Controls include irrelevant siRNA. Five days later we measure viability and apoptosis in ALL cells by flow cytometry. Results: (1) Knockdown of stroma cell CXCL12 or TGFBI reduces ALL survival. We performed global gene expression analysis upon human marrow stromal cells using RNASeq technology. Using bioinformatic approaches we are selecting some of the expressed stromal genes as candidates for the molecular mechanisms by which stromal cells prevent ALL apoptosis. We present preliminary results for two of our early candidates. (A) CXCL12 is a paracrine chemokine known to have activity in the marrow microenvironment upon hematopoietic cells and we hypothesized it may participate in the effect. Knockdown of CXCL12 with siRNA increased ALL cell death in the co-culture system. As measured by quantitative reverse transcriptase PCR stromal cell CXCL12 mRNA was reduced approximately 75% by siRNA treatment. Figure 1 displays representative results of the impact of CXCL12 knockdown in stromal cell on the survival of ALL cells in the coculture. The magnitude of effect was ~40% increase in ALL cell death. (B) TGFBI (transforming growth factor beta induced) is expressed by stromal cells. The gene is involved in cell-collagen interactions and we hypothesized it played a role. siRNA reduced stromal gene expression by about 90%. Figure 2 displays representative results in which ALL cell death increased by about 50%. (2) Validation of results using inhibitors to CXCL12. The gene knockdown experiments suggested a potential role for CXCL12 in prevention of ALL cell apoptosis. To further test this we tested the effect of plerixafor, a specific inhibitor of CXCL12/CXCR4 interactions, on survival of ALL. ALL cells express CXCR4. In a dose dependent manner (25 - 400 micromolar) we observed a 31-39% reduction in ALL survival in stromal co-cultures including plerixafor. Figure 3 depicts representative results with plerixafor 200 micromolar. We are evaluating small molecules to block TGFBI. (3) Potential augmentation of chemotherapy drug effects on ALL. We hypothesize that interference with stromal cell molecules that prevent apoptosis in ALL cells may increase the effectiveness of conventional antileukemia drugs. In our stromal cell/ALL coculture system we have identified the effective in vitro concentrations of the most commonly used ALL drugs. We measured the impact of combination of low dose plerixafor (LD10) and these individual drugs (used at approximately the LD50 concentrations). Figure 4 demonstrates increased antileukemia effects related to plerixafor for dexamethasone, vincristine, and 6-mercaptopurine. Results are plotted as a percentage of ALL cells surviving in the absence of any drugs. The low dose plerixafor alone control did not produce a statistically significant reduction in ALL survival. Conclusions: Marrow stromal cell-produced CXCL12 may contribute to prevention of apoptosis in human ALL cells. Pharmacological interference with its effect may enhance the effectiveness of some conventional chemotherapy drugs. Marrow stromal cell-produced TGFBI may also contribute to prevention of apoptosis in human ALL cells. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document