scholarly journals Power Transformer Fault Severity Estimation Based on Dissolved Gas Analysis and Energy of Fault Formation Technique

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Edwell T. Mharakurwa ◽  
G. N. Nyakoe ◽  
A. O. Akumu

Decision making on transformer insulation condition based on the evaluated incipient faults and aging stresses has been the norm for many asset managers. Despite being the extensively applied methodology in power transformer incipient fault detection, solely dissolved gas analysis (DGA) techniques cannot quantify the detected fault severity. Fault severity is the core property in transformer maintenance rankings. This paper presents a fuzzy logic methodology in determining transformer faults and severity through use of energy of fault formation of the evolved gasses during transformer faulting event. Additionally, the energy of fault formation is a temperature-dependent factor for all the associated evolved gases. Instead of using the energy-weighted DGA, the calculated total energy of related incipient fault is used for severity determination. Severity of faults detected by fuzzy logic-based key gas method is evaluated through the use of collected data from several in-service and faulty transformers. DGA results of oil samples drawn from transformers of different specifications and age are used to validate the model. Model results show that correctly detecting fault type and its severity determination based on total energy released during faults can enhance decision-making in prioritizing maintenance of faulty transformers.

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1009 ◽  
Author(s):  
Rahman Azis Prasojo ◽  
Harry Gumilang ◽  
Suwarno ◽  
Nur Ulfa Maulidevi ◽  
Bambang Anggoro Soedjarno

In determining the severity of power transformer faults, several approaches have been previously proposed; however, most published studies do not accommodate gas level, gas rate, and Dissolved Gas Analysis (DGA) interpretation in a single approach. To increase the reliability of the faults’ severity assessment of power transformers, a novel approach in the form of fuzzy logic has been proposed as a new solution to determine faults’ severity using the combination of gas level, gas rate, and DGA interpretation from the Duval Pentagon Method (DPM). A four-level typical concentration and rate were established based on the local population. To simplify the assessment of hundreds of power transformer data, a Support Vector Machine (SVM)-based DPM with high agreements to the graphical DPM has been developed. The proposed approach has been implemented to 448 power transformers and further implementation was done to evaluate faults’ severity of power transformers from historical DGA data. This new approach yields in high agreement with the previous methods, but with better sensitivity due to the incorporation of gas level, gas rate, and DGA interpretation results in one approach.


Energetika ◽  
2017 ◽  
Vol 63 (2) ◽  
Author(s):  
Ruta Liepniece ◽  
Sandra Vitolina ◽  
Janis Marks

To maintain the reliability of power transmission it is important to detect the incipient fault of power transformer as early as possible. If the fault of a power transformer is not detected promptly, it can evolve resulting in high repair costs or even failure of the power transformer and decreasing reliability of power transmission. The most commonly used method for power transformer fault detection is the dissolved gas analysis (DGA) of transformer oil. Various methods have been developed to interpret the data of dissolved gas analysis, but not many are applicable for the detection of the incipient fault. The detection of the incipient fault of a power transformer is included in both IEEE C57.104-2008 “Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers” and Standard of Latvian Electrotechnical Committee LEK 118 “Transformer Oil Inspection Standards”. In both standards, the limits of dissolved gases in transformer oil are divided into levels, each corresponding to different technical conditions of the power transformer including the level that indicates the incipient fault. However, these approaches vary to a great degree – one approach mostly indicates that transformers are in good condition with several cases that must be additionally evaluated, but the second approach mostly results in warning about the incipient fault, which must be confirmed by additional evaluation. The objective of this paper is to determine the most suitable approach to detect the incipient fault of power transformers. A case study is provided, which includes analysis of DGA data of 48 power transformers installed in the transmission network in Latvia with both methodologies mentioned above for detecting the incipient fault.


Sign in / Sign up

Export Citation Format

Share Document