Dissolved Gas Analysis (DGA) to Diagnose the Internal Faults of Power Transformer by using Fuzzy Logic Method

Author(s):  
Rahul Palke ◽  
Pragati Korde
Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1009 ◽  
Author(s):  
Rahman Azis Prasojo ◽  
Harry Gumilang ◽  
Suwarno ◽  
Nur Ulfa Maulidevi ◽  
Bambang Anggoro Soedjarno

In determining the severity of power transformer faults, several approaches have been previously proposed; however, most published studies do not accommodate gas level, gas rate, and Dissolved Gas Analysis (DGA) interpretation in a single approach. To increase the reliability of the faults’ severity assessment of power transformers, a novel approach in the form of fuzzy logic has been proposed as a new solution to determine faults’ severity using the combination of gas level, gas rate, and DGA interpretation from the Duval Pentagon Method (DPM). A four-level typical concentration and rate were established based on the local population. To simplify the assessment of hundreds of power transformer data, a Support Vector Machine (SVM)-based DPM with high agreements to the graphical DPM has been developed. The proposed approach has been implemented to 448 power transformers and further implementation was done to evaluate faults’ severity of power transformers from historical DGA data. This new approach yields in high agreement with the previous methods, but with better sensitivity due to the incorporation of gas level, gas rate, and DGA interpretation results in one approach.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Edwell T. Mharakurwa ◽  
G. N. Nyakoe ◽  
A. O. Akumu

Decision making on transformer insulation condition based on the evaluated incipient faults and aging stresses has been the norm for many asset managers. Despite being the extensively applied methodology in power transformer incipient fault detection, solely dissolved gas analysis (DGA) techniques cannot quantify the detected fault severity. Fault severity is the core property in transformer maintenance rankings. This paper presents a fuzzy logic methodology in determining transformer faults and severity through use of energy of fault formation of the evolved gasses during transformer faulting event. Additionally, the energy of fault formation is a temperature-dependent factor for all the associated evolved gases. Instead of using the energy-weighted DGA, the calculated total energy of related incipient fault is used for severity determination. Severity of faults detected by fuzzy logic-based key gas method is evaluated through the use of collected data from several in-service and faulty transformers. DGA results of oil samples drawn from transformers of different specifications and age are used to validate the model. Model results show that correctly detecting fault type and its severity determination based on total energy released during faults can enhance decision-making in prioritizing maintenance of faulty transformers.


2020 ◽  
Vol 13 (4) ◽  
pp. 579-587
Author(s):  
Seyed Javad Tabatabaei Shahrabad ◽  
Vahid Ghods ◽  
Mohammad Tolou Askari

Background: Power transformers are one of the most applicable electricity network devices which transmit output power of the generator to the network through increasing voltage and decreasing current. Due to high cost of such devices and cost of disconnecting device upon failure, disconnection and failure of the transformer should be avoided as much as possible. Objective: In addition, in order to increase reliability and reduce maintenance costs, such devices should be monitored constantly. Internal faults ionize and warm up oil and as a result, gases like carbon dioxide, methane, ethane, ethylene and acetylene are produced. Various methods have been proposed for diagnosing fault in power transformers where one of the most well-known methods is dissolved gas analysis (DGA). DGA in oil is one of the effective tools for diagnosing initial faults in transformers. Methods: Common fault detection methods using oil-dissolved gas analysis include Dornemburge, Duval’s triangle, IEC/IEEE standard, key gases and Rogers. In recent years, artificial intelligence like genetic algorithm, fuzzy logic and neural networks have been used to detect faults using DGA. In this paper, support vector machine (SVM) and decision tree are used to detect internal faults in power transformers. Results: By evaluation of the proposed methods, total accuracies of classifiers using SVM and decision tree were 90% and 97.5%, respectively. Conclusion: Decision tree shows better performance and it is suggested as a proper method for obtaining promising results.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 36
Author(s):  
Nitchamon Poonnoy ◽  
Cattareeya Suwanasri ◽  
Thanapong Suwanasri

This research focuses on problem identification due to faults in power transformers during operation by using dissolved gas analysis such as key gas, IEC ratio, Duval triangle techniques, and fuzzy logic approaches. Then, the condition of the power transformer is evaluated in terms of the percentage of failure index and internal fault determination. Fuzzy logic with the key gas approach was used to calculate the failure index and identify problems inside the power transformer. At the same time, the IEC three-gas ratio and Duval triangle are subsequently applied to confirm the problems in different failure types covering all possibilities inside the power transformer. After that, the fuzzy logic system was applied and validated with DGA results of 244 transformers as reference cases with satisfactory accuracy. Two transformers were evaluated and practically confirmed by the investigation results of an un-tanked power transformer. Finally, the DGA results of a total of 224 transformers were further evaluated by the fuzzy logic system. This fuzzy logic is a smart, accurate tool for automatically identifying faults occurring within transformers. Finally, the recommendation of maintenance strategy and time interval is proposed for effective planning to minimize the catastrophic damage, which could occur with the power transformer and its network.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2223 ◽  
Author(s):  
Sayed A. Ward ◽  
Adel El-Faraskoury ◽  
Mohamed Badawi ◽  
Shimaa A. Ibrahim ◽  
Karar Mahmoud ◽  
...  

Power transformers are considered important and expensive items in electrical power networks. In this regard, the early discovery of potential faults in transformers considering datasets collected from diverse sensors can guarantee the continuous operation of electrical systems. Indeed, the discontinuity of these transformers is expensive and can lead to excessive economic losses for the power utilities. Dissolved gas analysis (DGA), as well as partial discharge (PD) tests considering different intelligent sensors for the measurement process, are used as diagnostic techniques for detecting the oil insulation level. This paper includes two parts; the first part is about the integration among the diagnosis results of recognized dissolved gas analysis techniques, in this part, the proposed techniques are classified into four techniques. The integration between the different DGA techniques not only improves the oil fault condition monitoring but also overcomes the individual weakness, and this positive feature is proved by using 532 samples from the Egyptian Electricity Transmission Company (EETC). The second part overview the experimental setup for (66/11.86 kV–40 MVA) power transformer which exists in the Egyptian Electricity Transmission Company (EETC), the first section in this part analyzes the dissolved gases concentricity for many samples, and the second section illustrates the measurement of PD particularly in this case study. The results demonstrate that precise interpretation of oil transformers can be provided to system operators, thanks to the combination of the most appropriate techniques.


Sign in / Sign up

Export Citation Format

Share Document