scholarly journals Prediction for Chaotic Time Series-Based AE-CNN and Transfer Learning

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Baogui Xin ◽  
Wei Peng

It has been a hot and challenging topic to predict the chaotic time series in the medium-to-long term. We combine autoencoders and convolutional neural networks (AE-CNN) to capture the intrinsic certainty of chaotic time series. We utilize the transfer learning (TL) theory to improve the prediction performance in medium-to-long term. Thus, we develop a prediction scheme for chaotic time series-based AE-CNN and TL named AE-CNN-TL. Our experimental results show that the proposed AE-CNN-TL has much better prediction performance than any one of the following: AE-CNN, ARMA, and LSTM.

2016 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. D. García ◽  
O. E. García ◽  
E. Cuevas ◽  
V. E. Cachorro ◽  
A. Barreto ◽  
...  

Abstract. This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  >  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Gustaf Halvardsson ◽  
Johanna Peterson ◽  
César Soto-Valero ◽  
Benoit Baudry

AbstractThe automatic interpretation of sign languages is a challenging task, as it requires the usage of high-level vision and high-level motion processing systems for providing accurate image perception. In this paper, we use Convolutional Neural Networks (CNNs) and transfer learning to make computers able to interpret signs of the Swedish Sign Language (SSL) hand alphabet. Our model consists of the implementation of a pre-trained InceptionV3 network, and the usage of the mini-batch gradient descent optimization algorithm. We rely on transfer learning during the pre-training of the model and its data. The final accuracy of the model, based on 8 study subjects and 9400 images, is 85%. Our results indicate that the usage of CNNs is a promising approach to interpret sign languages, and transfer learning can be used to achieve high testing accuracy despite using a small training dataset. Furthermore, we describe the implementation details of our model to interpret signs as a user-friendly web application.


Sign in / Sign up

Export Citation Format

Share Document