scholarly journals Deep Metric Learning-Assisted 3D Audio-Visual Speaker Tracking via Two-Layer Particle Filter

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yidi Li ◽  
Hong Liu ◽  
Bing Yang ◽  
Runwei Ding ◽  
Yang Chen

For speaker tracking, integrating multimodal information from audio and video provides an effective and promising solution. The current challenges are focused on the construction of a stable observation model. To this end, we propose a 3D audio-visual speaker tracker assisted by deep metric learning on the two-layer particle filter framework. Firstly, the audio-guided motion model is applied to generate candidate samples in the hierarchical structure consisting of an audio layer and a visual layer. Then, a stable observation model is proposed with a designed Siamese network, which provides the similarity-based likelihood to calculate particle weights. The speaker position is estimated using an optimal particle set, which integrates the decisions from audio particles and visual particles. Finally, the long short-term mechanism-based template update strategy is adopted to prevent drift during tracking. Experimental results demonstrate that the proposed method outperforms the single-modal trackers and comparison methods. Efficient and robust tracking is achieved both in 3D space and on image plane.

2013 ◽  
Vol 846-847 ◽  
pp. 1217-1220
Author(s):  
Yuan Zheng Li

Traditional tracking algorithm is not compatible between robustness and efficiency, under complex scenes, the stable template update strategy is not robust to target appearance changes. Therefore, the paper presents a dynamic template-update method that combined with a mean-shift guided particle filter tracking method. By incorporating the original information into the updated template, or according to the variety of each component in template to adjust the updating weights adaptively, the presented algorithm has the natural ability of anti-drift. Besides, the proposed method cope the one-step iteration of mean-shift algorithm with the particle filter, thus boost the performance of efficiency. Experimental results show the feasibility of the proposed algorithm in this paper.


2020 ◽  
Author(s):  
Yuki Takashima ◽  
Ryoichi Takashima ◽  
Tetsuya Takiguchi ◽  
Yasuo Ariki

Author(s):  
Xinshao Wang ◽  
Yang Hua ◽  
Elyor Kodirov ◽  
Neil M Robertson

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 572
Author(s):  
Alan M. Luu ◽  
Jacob R. Leistico ◽  
Tim Miller ◽  
Somang Kim ◽  
Jun S. Song

Understanding the recognition of specific epitopes by cytotoxic T cells is a central problem in immunology. Although predicting binding between peptides and the class I Major Histocompatibility Complex (MHC) has had success, predicting interactions between T cell receptors (TCRs) and MHC class I-peptide complexes (pMHC) remains elusive. This paper utilizes a convolutional neural network model employing deep metric learning and multimodal learning to perform two critical tasks in TCR-epitope binding prediction: identifying the TCRs that bind a given epitope from a TCR repertoire, and identifying the binding epitope of a given TCR from a list of candidate epitopes. Our model can perform both tasks simultaneously and reveals that inconsistent preprocessing of TCR sequences can confound binding prediction. Applying a neural network interpretation method identifies key amino acid sequence patterns and positions within the TCR, important for binding specificity. Contrary to common assumption, known crystal structures of TCR-pMHC complexes show that the predicted salient amino acid positions are not necessarily the closest to the epitopes, implying that physical proximity may not be a good proxy for importance in determining TCR-epitope specificity. Our work thus provides an insight into the learned predictive features of TCR-epitope binding specificity and advances the associated classification tasks.


Sign in / Sign up

Export Citation Format

Share Document