epitope binding
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 26)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Mary Prahl ◽  
Yarden Golan ◽  
Arianna Cassidy ◽  
Yusuke Matsui ◽  
Lin Li ◽  
...  

Abstract Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. We evaluated the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during pregnancy. We found no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we found time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persisted during early infancy. Additionally, using phage immunoprecipitation sequencing, we found a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. In conclusion, products of mRNA vaccines are not transferred to the fetus during pregnancy, however timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy


2021 ◽  
Author(s):  
Mary Prahl ◽  
Yarden Golan ◽  
Arianna G. Cassidy ◽  
Yusuke Matsui ◽  
Lin Li ◽  
...  

Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. We evaluated the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during pregnancy. We found no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we found time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persisted during early infancy. Additionally, using phage immunoprecipitation sequencing, we found a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. In conclusion, products of mRNA vaccines are not transferred to the fetus during pregnancy, however timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Winston A. Haynes ◽  
Kathy Kamath ◽  
Joel Bozekowski ◽  
Elisabeth Baum-Jones ◽  
Melissa Campbell ◽  
...  

AbstractAs Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to spread, characterization of its antibody epitopes, emerging strains, related coronaviruses, and even the human proteome in naturally infected patients can guide the development of effective vaccines and therapies. Since traditional epitope identification tools are dependent upon pre-defined peptide sequences, they are not readily adaptable to diverse viral proteomes. The Serum Epitope Repertoire Analysis (SERA) platform leverages a high diversity random bacterial display library to identify proteome-independent epitope binding specificities which are then analyzed in the context of organisms of interest. When evaluating immune response in the context of SARS-CoV-2, we identify dominant epitope regions and motifs which demonstrate potential to classify mild from severe disease and relate to neutralization activity. We highlight SARS-CoV-2 epitopes that are cross-reactive with other coronaviruses and demonstrate decreased epitope signal for mutant SARS-CoV-2 strains. Collectively, the evolution of SARS-CoV-2 mutants towards reduced antibody response highlight the importance of data-driven development of the vaccines and therapies to treat COVID-19.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos Wert-Carvajal ◽  
Rubén Sánchez-García ◽  
José R Macías ◽  
Rebeca Sanz-Pamplona ◽  
Almudena Méndez Pérez ◽  
...  

AbstractLack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process can reduce operational requirements. We have developed a web server tool (NAP-CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor samples. As a proof-of-concept, we used the B16 melanoma model to test the system’s predictive capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://biocomp.cnb.csic.es/NeoantigensApp/ with scripts and datasets accessible through the download section.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 572
Author(s):  
Alan M. Luu ◽  
Jacob R. Leistico ◽  
Tim Miller ◽  
Somang Kim ◽  
Jun S. Song

Understanding the recognition of specific epitopes by cytotoxic T cells is a central problem in immunology. Although predicting binding between peptides and the class I Major Histocompatibility Complex (MHC) has had success, predicting interactions between T cell receptors (TCRs) and MHC class I-peptide complexes (pMHC) remains elusive. This paper utilizes a convolutional neural network model employing deep metric learning and multimodal learning to perform two critical tasks in TCR-epitope binding prediction: identifying the TCRs that bind a given epitope from a TCR repertoire, and identifying the binding epitope of a given TCR from a list of candidate epitopes. Our model can perform both tasks simultaneously and reveals that inconsistent preprocessing of TCR sequences can confound binding prediction. Applying a neural network interpretation method identifies key amino acid sequence patterns and positions within the TCR, important for binding specificity. Contrary to common assumption, known crystal structures of TCR-pMHC complexes show that the predicted salient amino acid positions are not necessarily the closest to the epitopes, implying that physical proximity may not be a good proxy for importance in determining TCR-epitope specificity. Our work thus provides an insight into the learned predictive features of TCR-epitope binding specificity and advances the associated classification tasks.


2021 ◽  
Author(s):  
Alan Luu ◽  
Jacob R Leistico ◽  
Tim Miller ◽  
Somang Kim ◽  
Jun S. Song

Understanding the recognition of specific epitopes by cytotoxic T cells is a central problem in immunology. Although predicting binding between peptides and the class I Major Histocompatibility Complex (MHC) has had success, predicting interactions between T cell receptors (TCRs) and MHC class I-peptide complexes (pMHC) remains elusive. This paper utilizes a convolutional neural network model employing deep metric learning and multimodal learning to perform two critical tasks in TCR-epitope binding prediction: identifying the TCRs that bind a given epitope from a TCR repertoire, and identifying the binding epitope of a given TCR from a list of candidate epitopes. Our model can perform both tasks simultaneously and reveals that inconsistent preprocessing of CDR3B sequences can confound binding prediction. Applying a neural network interpretation method identifies key amino acid sequence patterns and positions within the TCR important for binding specificity. Contrary to the common assumption, known crystal structures of TCR-pMHC complexes show that the predicted salient amino acid positions are not necessarily the closest to the epitopes, implying that physical proximity may not be a good proxy for importance in determining TCR-epitope specificity. Our work thus provides insight into the learned predictive features of TCR-epitope binding specificity and advances associated classification tasks.


Vaccines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 270
Author(s):  
Nicky de Vrij ◽  
Pieter Meysman ◽  
Sofie Gielis ◽  
Wim Adriaensen ◽  
Kris Laukens ◽  
...  

Susceptibility for leishmaniasis is largely dependent on host genetic and immune factors. Despite the previously described association of human leukocyte antigen (HLA) gene cluster variants as genetic susceptibility factors for leishmaniasis, little is known regarding the mechanisms that underpin these associations. To better understand this underlying functionality, we first collected all known leishmaniasis-associated HLA variants in a thorough literature review. Next, we aligned and compared the protection- and risk-associated HLA-DRB1 allele sequences. This identified several amino acid polymorphisms that distinguish protection- from risk-associated HLA-DRB1 alleles. Subsequently, T cell epitope binding predictions were carried out across these alleles to map the impact of these polymorphisms on the epitope binding repertoires. For these predictions, we used epitopes derived from entire proteomes of multiple Leishmania species. Epitopes binding to protection-associated HLA-DRB1 alleles shared common binding core motifs, mapping to the identified HLA-DRB1 amino acid polymorphisms. These results strongly suggest that HLA polymorphism, resulting in differential antigen presentation, affects the association between HLA and leishmaniasis disease development. Finally, we established a valuable open-access resource of putative epitopes. A set of 14 HLA-unrestricted strong-binding epitopes, conserved across species, was prioritized for further epitope discovery in the search for novel subunit-based vaccines.


2021 ◽  
Author(s):  
Nicky de Vrij ◽  
Pieter Meysman ◽  
Sofie Gielis ◽  
Wim Adriaensen ◽  
Kris Laukens ◽  
...  

AbstractSusceptibility for leishmaniasis is largely dependent on genetic- and immune factors of the host. Despite the previously described association of human leukocyte antigen (HLA) gene cluster variants as genetic susceptibility factors, little is known on the mechanisms that mediate these associations. To characterize the functionality underpinning these associations between HLA and disease, we predicted the epitope binding repertoires for all known leishmaniasis-associated HLA variants collected in a thorough literature review. We identified several amino acid polymorphisms in the HLA sequences that distinguished protective-from risk-associated HLA-DRB1 alleles. Proteome-wide and multi-species T cell epitope binding predictions were carried out across these alleles, enabling us to map the effects on the epitope binding repertoires. The protective-associated HLA-DRB1 alleles were characterized by common binding core motifs, which map to the identified amino acid polymorphisms. These results strongly suggest that polymorphism in the HLA region, resulting in differential antigen presentation, affects the association between HLA and leishmaniasis disease development. Finally, we established a valuable open-access resource of putative epitopes, of which a set of 14 HLA-unrestricted strong-binding epitopes, conserved across species, were prioritized for further epitope discovery in the search for novel subunit-based vaccines.


2021 ◽  
Vol 28 ◽  
Author(s):  
Salvador Eugenio C. Caoili

Background: B-cell epitope prediction is a computational approach originally developed to support the design of peptide-based vaccines for inducing protective antibody-mediated immunity, as exemplified by neutralization of biological activity (e.g., pathogen infectivity). Said approach is benchmarked against experimentally obtained data on paratope-epitope binding; but such data are curated primarily on the basis of immune-complex structure, obscuring the role of antigen conformational disorder in the underlying immune recognition process. Objective: This work aimed to critically analyze the curation of epitope-paratope binding data that are relevant to B-cell epitope prediction for peptide-based vaccine design. Methods: Database records on neutralizing monoclonal antipeptide antibody immune-complex structure were retrieved from the Immune Epitope Database (IEDB) and analyzed in relation to other data from both IEDB and external sources including the Protein Data Bank (PDB) and published literature, with special attention to data on conformational disorder among paratope-bound and unbound peptidic antigens. Results: Data analysis revealed key examples of antipeptide antibodies that recognize conformationally disordered B-cell epitopes and thereby neutralize the biological activity of cognate targets (e.g., proteins and pathogens), with inconsistency noted in the mapping of some epitopes due to reliance on immune-complex structural details, which vary even among experiments utilizing the same paratope-epitope combination (e.g., with the epitope forming part of a peptide or a protein). Conclusion: The results suggest an alternative approach to curating paratope-epitope binding data based on neutralization of biological activity by polyclonal antipeptide antibodies, with reference to immunogenic peptide sequences and their conformational disorder in unbound antigen structures.


Author(s):  
Maria Suprun ◽  
Randall J Ellis ◽  
Hugh A Sampson ◽  
Mayte Suárez-Fariñas

Abstract Summary Analysis of epitope-specific antibody repertoires has provided novel insights into the pathogenesis of inflammatory disorders, especially allergies. A novel multiplex immunoassay, termed Bead-Based Epitope Assay (BBEA), was developed to quantify levels of epitope-specific immunoglobulins, including IgE, IgG, IgA and IgD isotypes. bbeaR is an open-source R package, developed for the BBEA, provides a framework to import, process and normalize .csv data files exported from the Luminex reader, evaluate various quality control metrics, analyze differential epitope-binding antibodies with linear modeling, visualize results and map epitopes’ amino acid sequences to their respective primary protein structures. bbeaR enables streamlined and reproducible analysis of epitope-specific antibody profiles. Availability and implementation bbeaR is open-source and freely available from GitHub as an R package: https://github.com/msuprun/bbeaR; vignettes included. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document