scholarly journals Inverting the Truck-Drone Network Problem to Find Best Case Configuration

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Robert Rich

Many industries are looking for ways to economically use truck/rail/ship fitted with drone technologies to augment the “last mile” delivery effort. While drone technologies abound, few, if any studies look at the proper configuration of the drone based on significant features of the problem: delivery density, operating area, drone range, and speed. Here, we first present the truck-drone problem and then invert the network routing problem such that the best case drone speed and range are fitted to the truck for a given scenario based on the network delivery density. By inverting the problem, a business can quickly determine the drone configuration (proper drone range and speed) necessary to optimize the delivery system. Additionally, we provide a more usable version of the truck-drone routing problem as a mixed integer program that can be easily adopted with standardized software used to solve linear programming. Furthermore, our computational metaheuristics and experiments conducted in support of this work are available for download. The metaheuristics used herein surpass current best-in-class algorithms found in literature.

Kybernetes ◽  
2019 ◽  
Vol 49 (4) ◽  
pp. 1267-1284 ◽  
Author(s):  
Yandong He ◽  
Xu Wang ◽  
Fuli Zhou ◽  
Yun Lin

Purpose This paper aims to study the vehicle routing problem with dynamic customers considering dual service (including home delivery [HD] and customer pickup [CP]) in the last mile delivery in which three decisions have to be made: determine routes that lie along the HD points and CP facilities; optimize routes in real time, which mode is better between simultaneous dual service (SDS, HD points and CP facilities are served simultaneously by the same vehicle); and respective dual service (RDS, HD points and CP facilities are served by different vehicles)? Design/methodology/approach This paper establishes a mixed integer linear programing model for the dynamic vehicle routing problem considering simultaneous dual services (DVRP-SDS). To increase the practical usefulness and solve large instances, the authors designed a two-phase matheuristic including construction-improvement heuristics to solve the deterministic model and dynamic programing to adjust routes to dynamic customers. Findings The computational experiments show that the CP facilities offer greater flexibility for adjusting routes to dynamic customers and that the SDS delivery system outperforms the RDS delivery system in terms of cost and number of vehicles used. Practical implications The results provide managerial insights for express enterprises from the perspective of operation research to make decisions. Originality/value This paper is among the first papers to study the DVRP-SDS. Moreover, this paper guides the managers to select better delivery mode in the last mile delivery.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Robert Rich

Many network problems deal with the routing of a main tool comprised of several parallel assisting tools. These problems can be found with multi-tool-head routing of CNC machines, waterjets, plasma sprayers, and cutting machines. Other applications involve logistics, distribution, and material handling that require a main tool with assisting tools. Currently no studies exist that optimally route a main tool comprised of and fitted with multiple tools, nor do any studies evaluate the impact of adding additional capabilities to the tool set. Herein we define the network routing problem for a main tool comprised of multiple secondary tools. We introduce first principles to properly configure the main tool with the appropriate number of supporting tools such that that system is not overstatured. We invert the network geometry to extract the “best case” configuration for toolset configuration to include speed, range, and number of such that the system is lean. Our computational studies reveal that the theorems introduced herein greatly improve the overall system performance without oversaturating it with unused resources. In order to validate experiments, we define a mixed integer program and compare it to our metaheuristics developed for experimentation. Both the MIP and the metaheuristics herein optimally route a main tool with multiple assisting tools as well as the routing of a parcel delivery truck comprised of many drones.


2021 ◽  
Author(s):  
Zahed Shahmoradi ◽  
Taewoo Lee

Although inverse linear programming (LP) has received increasing attention as a technique to identify an LP that can reproduce observed decisions that are originally from a complex system, the performance of the linear objective function inferred by existing inverse LP methods is often highly sensitive to noise, errors, and uncertainty in the underlying decision data. Inspired by robust regression techniques that mitigate the impact of noisy data on the model fitting, in “Quantile Inverse Optimization: Improving Stability in Inverse Linear Programming,” Shahmoradi and Lee propose a notion of stability in inverse LP and develop an inverse optimization model that identities objective functions that are stable against data imperfection. Although such a stability consideration renders the inverse model a large-scale mixed-integer program, the authors analyze the connection between the model and well-known biclique problems and propose an efficient exact algorithm as well as heuristics.


Author(s):  
Julian Hof ◽  
Michael Schneider

In numerous practical vehicle-routing applications, larger vehicles are employed as mobile depots to support a fleet of smaller vehicles that perform certain tasks. The mobile depots offer the possibility of keeping the task vehicles operational by supplying them en route with certain resources. For example, in two-echelon distribution systems, small task vehicles are used to navigate narrow streets and to deliver/collect goods or to collect waste, and larger vehicles serve as mobile depots to replenish the goods to be delivered or to receive collected goods or waste at the outskirts of the urban area. Accessibility constraints may also be imposed by regulations on emissions, which make some areas only accessible for environmentally friendly vehicles such as, for example, battery-powered electric vehicles. Especially if the respective refueling infrastructure is sparse, mobile refueling stations seem to be an interesting alternative. In this paper, we introduce the vehicle-routing problem with time windows and mobile depots (VRPTWMD) to capture the routing decisions of the described applications in a generalized fashion. The VRPTWMD is characterized by fleets of task vehicles (TVs) and support vehicles (SVs). The SVs may serve as mobile depots to restore either the load or the fuel capacity of the TVs that are used to fulfill the customer requests. We present a mixed-integer program for the VRPTWMD with which small instances can be solved using a commercial solver. Moreover, we develop a high-quality hybrid heuristic composed of an adaptive large neighborhood search and a path relinking approach to provide solutions on larger problem instances. We use a newly generated set of large VRPTWMD instances to analyze the effect of different problem characteristics on the structure of the identified solutions. In addition, our approach shows very convincing performance on benchmark instances for the related two-echelon multiple-trip VRP with satellite synchronization, which can be viewed as a special case of the VRPTWMD. Our heuristic is able to significantly improve a large part of the previous best-known solutions while spending notably less computation time than the comparison algorithm from the literature.


2016 ◽  
Vol 46 (2) ◽  
pp. 234-248 ◽  
Author(s):  
Erin J. Belval ◽  
Yu Wei ◽  
Michael Bevers

Wildfire behavior is a complex and stochastic phenomenon that can present unique tactical management challenges. This paper investigates a multistage stochastic mixed integer program with full recourse to model spatially explicit fire behavior and to select suppression locations for a wildland fire. Simplified suppression decisions take the form of “suppression nodes”, which are placed on a raster landscape for multiple decision stages. Weather scenarios are used to represent a distribution of probable changes in fire behavior in response to random weather changes, modeled using probabilistic weather trees. Multistage suppression decisions and fire behavior respond to these weather events and to each other. Nonanticipativity constraints ensure that suppression decisions account for uncertainty in weather forecasts. Test cases for this model provide examples of fire behavior interacting with suppression to achieve a minimum expected area impacted by fire and suppression.


1976 ◽  
Vol 8 (4) ◽  
pp. 443-446
Author(s):  
W G Truscott

This note examines a previously published model for dynamic location—allocation analysis. The usefulness of this model is enhanced by reformulating the problem as an operational zero-one, mixed-integer program while retaining the intent of the original version.


Sign in / Sign up

Export Citation Format

Share Document