scholarly journals Bilinear Equation of the Nonlinear Partial Differential Equation and Its Application

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Xiao-Feng Yang ◽  
Yi Wei

The homogeneous balance of undetermined coefficient method is firstly proposed to derive a more general bilinear equation of the nonlinear partial differential equation (NLPDE). By applying perturbation method, subsidiary ordinary differential equation (sub-ODE) method, and compatible condition to bilinear equation, more exact solutions of NLPDE are obtained. The KdV equation, Burgers equation, Boussinesq equation, and Sawada-Kotera equation are chosen to illustrate the validity of our method. We find that the underlying relation among the G′/G-expansion method, Hirota’s method, and HB method is a bilinear equation. The proposed method is also a standard and computable method, which can be generalized to deal with other types of NLPDE.

Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3627-3641
Author(s):  
Miodrag Mateljevic ◽  
Attia Mostafa

The Korteweg-de Vries (KdV) equation, a nonlinear partial differential equation which describes the motion of water waves, has been of interest since John Scott Russell (1834) [4]. In present work we study this kind of equation and through our study we found that the KdV equation passes Painleve?s test, but we could not locate the solution directly, so we used Schwarzian derivative technique. Therefore, we were able to find two new exact solutions to the KdV equation. Also, we used the numerical method of Modified Zabusky-Kruskal to describe the behavior of these solutions.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Arun Kumar ◽  
Ram Dayal Pankaj

Analytical and numerical solutions are obtained for coupled nonlinear partial differential equation by the well-known Laplace decomposition method. We combined Laplace transform and Adomain decomposition method and present a new approach for solving coupled Schrödinger-Korteweg-de Vries (Sch-KdV) equation. The method does not need linearization, weak nonlinearity assumptions, or perturbation theory. We compared the numerical solutions with corresponding analytical solutions.


Author(s):  
Ram Dayal Pankaj ◽  
Arun Kumar ◽  
Chandrawati Sindhi

The Ritz variational method has been applied to the nonlinear partial differential equation to construct a model for travelling wave solution. The spatially periodic trial function was chosen in the form of combination of Jacobian Elliptic functions, with the dependence of its parameters


2013 ◽  
Vol 5 (04) ◽  
pp. 407-422 ◽  
Author(s):  
Matthew A. Beauregard ◽  
Qin Sheng

AbstractFinite difference computations that involve spatial adaptation commonly employ an equidistribution principle. In these cases, a new mesh is constructed such that a given monitor function is equidistributed in some sense. Typical choices of the monitor function involve the solution or one of its many derivatives. This straightforward concept has proven to be extremely effective and practical. However, selections of core monitoring functions are often challenging and crucial to the computational success. This paper concerns six different designs of the monitoring function that targets a highly nonlinear partial differential equation that exhibits both quenching-type and degeneracy singularities. While the first four monitoring strategies are within the so-calledprimitiveregime, the rest belong to a later category of themodifiedtype, which requires the priori knowledge of certain important quenching solution characteristics. Simulated examples are given to illustrate our study and conclusions.


Sign in / Sign up

Export Citation Format

Share Document