scholarly journals Non-linear water waves (KdV) equation by Painlevé property and Schwarzian derivative

Filomat ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 3627-3641
Author(s):  
Miodrag Mateljevic ◽  
Attia Mostafa

The Korteweg-de Vries (KdV) equation, a nonlinear partial differential equation which describes the motion of water waves, has been of interest since John Scott Russell (1834) [4]. In present work we study this kind of equation and through our study we found that the KdV equation passes Painleve?s test, but we could not locate the solution directly, so we used Schwarzian derivative technique. Therefore, we were able to find two new exact solutions to the KdV equation. Also, we used the numerical method of Modified Zabusky-Kruskal to describe the behavior of these solutions.

2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Xiao-Feng Yang ◽  
Yi Wei

The homogeneous balance of undetermined coefficient method is firstly proposed to derive a more general bilinear equation of the nonlinear partial differential equation (NLPDE). By applying perturbation method, subsidiary ordinary differential equation (sub-ODE) method, and compatible condition to bilinear equation, more exact solutions of NLPDE are obtained. The KdV equation, Burgers equation, Boussinesq equation, and Sawada-Kotera equation are chosen to illustrate the validity of our method. We find that the underlying relation among the G′/G-expansion method, Hirota’s method, and HB method is a bilinear equation. The proposed method is also a standard and computable method, which can be generalized to deal with other types of NLPDE.


2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Arun Kumar ◽  
Ram Dayal Pankaj

Analytical and numerical solutions are obtained for coupled nonlinear partial differential equation by the well-known Laplace decomposition method. We combined Laplace transform and Adomain decomposition method and present a new approach for solving coupled Schrödinger-Korteweg-de Vries (Sch-KdV) equation. The method does not need linearization, weak nonlinearity assumptions, or perturbation theory. We compared the numerical solutions with corresponding analytical solutions.


2015 ◽  
Vol 4 (2) ◽  
pp. 216
Author(s):  
Attia Mostafa

<p>The Korteweg-de Vries (KdV) equation which is the third order nonlinear PDE has been of interest since Scott Russell (1844) . In this paper we study this kind of equation by Painleve equation and through this study, we find that KdV equation satisfies Painleve property, but we could not find a solution directly, so we transformed the KdV equation to the like-KdV equation, therefore, we were able to find four exact solutions to the original KdV equation.</p>


Author(s):  
S. G. Rajeev

Some exceptional situations in fluid mechanics can be modeled by equations that are analytically solvable. The most famous example is the Korteweg–de Vries (KdV) equation for shallow water waves in a channel. The exact soliton solution of this equation is derived. The Lax pair formalism for solving the general initial value problem is outlined. Two hamiltonian formalisms for the KdV equation (Fadeev–Zakharov and Magri) are explained. Then a short review of the geometry of curves (Frenet–Serret equations) is given. They are used to derive a remarkably simple equation for the propagation of a kink along a vortex filament. This equation of Hasimoto has surprising connections to the nonlinear Schrödinger equation and to the Heisenberg model of ferromagnetism. An exact soliton solution is found.


2019 ◽  
Vol 875 ◽  
pp. 1145-1174 ◽  
Author(s):  
T. Congy ◽  
G. A. El ◽  
M. A. Hoefer

A new type of wave–mean flow interaction is identified and studied in which a small-amplitude, linear, dispersive modulated wave propagates through an evolving, nonlinear, large-scale fluid state such as an expansion (rarefaction) wave or a dispersive shock wave (undular bore). The Korteweg–de Vries (KdV) equation is considered as a prototypical example of dynamic wavepacket–mean flow interaction. Modulation equations are derived for the coupling between linear wave modulations and a nonlinear mean flow. These equations admit a particular class of solutions that describe the transmission or trapping of a linear wavepacket by an unsteady hydrodynamic state. Two adiabatic invariants of motion are identified that determine the transmission, trapping conditions and show that wavepackets incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves exhibit so-called hydrodynamic reciprocity recently described in Maiden et al. (Phys. Rev. Lett., vol. 120, 2018, 144101) in the context of hydrodynamic soliton tunnelling. The modulation theory results are in excellent agreement with direct numerical simulations of full KdV dynamics. The integrability of the KdV equation is not invoked so these results can be extended to other nonlinear dispersive fluid mechanic models.


Author(s):  
Ram Dayal Pankaj ◽  
Arun Kumar ◽  
Chandrawati Sindhi

The Ritz variational method has been applied to the nonlinear partial differential equation to construct a model for travelling wave solution. The spatially periodic trial function was chosen in the form of combination of Jacobian Elliptic functions, with the dependence of its parameters


Sign in / Sign up

Export Citation Format

Share Document