scholarly journals Quantitative Characterization of Pore Connectivity and Movable Fluid Distribution of Tight Sandstones: A Case Study of the Upper Triassic Chang 7 Member, Yanchang Formation in Ordos Basin, China

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Boli Wang ◽  
Xisen Zhao ◽  
Wen Zhou ◽  
Bin Chang ◽  
Hao Xu

The pore connectivity and distribution of moveable fluids, which determines fluid movability and recoverable reserves, are critical for enhancing oil/gas recovery in tight sandstone reservoirs. In this paper, multiple techniques including high-pressure mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and microcomputer tomography scanning (micro-CT) were used for the quantitative characterization of pore structure, pore connectivity, and movable fluid distribution. Firstly, sample porosity and permeability were obtained. Pore morphology and the 3D distribution of the pore structures were analyzed using SEM and micro-CT, respectively. The pore-size distribution (PSD) from NMR was generally broader than that from MIP because this technique simply characterized the connected pore volume, whereas NMR showed the total pore volume. Therefore, an attempt was made to calculate pore connectivity percentages of pores with different radii (<50 nm, 50 nm–0.1 μm, and 0.1 μm–1 μm) using the difference between the PSD obtained from MIP and NMR. It was found that small pores (r<0.05 μm) contributed 5.02%–18.00% to connectivity, which is less than large pores (r>0.05 μm) with contribution of 36.60%–92.00%, although small pores had greater pore volumes. In addition, a new parameter, effective movable fluid saturation, was proposed based on the initial movable fluid saturation from NMR and the pore connectivity percentage from MIP and NMR. The results demonstrated that the initial movable fluid saturation decreased by 14.16% on average when disconnected pores were excluded. It was concluded that the effective movable fluid saturation has a higher accuracy in evaluating the recovery of tight sandstone reservoirs.

Fuel ◽  
2017 ◽  
Vol 209 ◽  
pp. 254-264 ◽  
Author(s):  
Xuefeng Liu ◽  
Jianfu Wang ◽  
Lin Ge ◽  
Falong Hu ◽  
Chaoliu Li ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jian Shi ◽  
Xiaolong Wan ◽  
Qichao Xie ◽  
Shuxun Zhou ◽  
Yan Zhou ◽  
...  

Based on the background of sedimentary characteristics, a large amount of core and thin section analysis, taking Chang 6 reservoir of Yanchang Formation in the central and western Ordos Basin as an example, through the application of scanning electron microscopy, high-pressure mercury injection, nuclear magnetic resonance and microscopic water drive oil model, and other experimental test methods, the diagenetic facies types and microscopic pore structure characteristics of tight sandstone reservoirs are discussed and analyzed in depth. The results show that the average porosity loss rate caused by early diagenesis compaction in the study area is 50.62%, which is the main reason for reservoir compactness. The cementation further causes porosity loss, and the later dissolution increases the reservoir space in the study area to a certain extent. Different diagenetic facies reservoirs not only have obvious differences in porosity evolution characteristics but also have significant differences in pore throat radius distribution characteristics, movable fluid occurrence characteristics, and water drive oil characteristics. The pore throat distribution with radius greater than R50∼R60 determines the permeability. The difference in movable fluid saturation mainly depends on the connectivity of the relative large pore space corresponding to the relaxation time greater than the cut-off value of T2. The size of pore throat radius has a good control effect on water flooding efficiency.


Sign in / Sign up

Export Citation Format

Share Document