scholarly journals Differential Relationship between Microstructural Integrity in White Matter Tracts and Motor Recovery following Stroke Based on Brain-Derived Neurotrophic Factor Genotype

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Eunhee Park ◽  
Jungsoo Lee ◽  
Won Hyuk Chang ◽  
Ahee Lee ◽  
Friedhelm C. Hummel ◽  
...  

Objective. The relationship between white matter integrity and the brain-derived neurotrophic factor (BDNF) genotype and its effects on motor recovery after stroke are poorly understood. We investigated the values of fractional anisotropy (FA) in the corticospinal tract (CST), the intrahemispheric connection from the primary motor cortex to the ventral premotor cortex (M1PMv), and the interhemispheric connection via the corpus callosum (CC) in patients with the BDNF genotype from the acute to the subacute phase after stroke. Methods. The Fugl-Meyer assessment, upper extremity (FMA-UE), and tract-related FA were assessed at 2 weeks (T1) and 3 months (T2) after stroke using diffusion tensor imaging (DTI). Fifty-eight patients diagnosed with ischemic stroke were classified according to the BDNF genotype into a Val (valine homozygotes) or Met (methionine heterozygotes and homozygotes) group. Results. The Val group exhibited a larger reduction of FA values in the ipsilesional M1PMv than the Met group from T1 to T2. The FMA-UE at T2 was negatively correlated with FA of the contralesional M1PMv at T2 in the Val group but was positively correlated with FA of the ipsilesional CST and CC at T2 in the Met group. Conclusions. The integrity of the intra- and interhemispheric connections might be related to different processes of motor recovery dependent on the BDNF genotype. Thus, the BDNF genotype may need to be considered as a factor influencing neuroplasticity and functional recovery in patients with stroke. This trial is registered with http://www.clinicaltrials.gov: NCT03647787.

2017 ◽  
Vol 31 (12) ◽  
pp. 1029-1041 ◽  
Author(s):  
Adrian G. Guggisberg ◽  
Pierre Nicolo ◽  
Leonardo G. Cohen ◽  
Armin Schnider ◽  
Ethan R. Buch

Background. Evolution of motor function during the first months after stroke is stereotypically bifurcated, consisting of either recovery to about 70% of maximum possible improvement (“proportional recovery, PROP”) or in little to no improvement (“poor recovery, POOR”). There is currently no evidence that any rehabilitation treatment will prevent POOR and favor PROP. Objective. To perform a longitudinal and multimodal assessment of functional and structural changes in brain organization associated with PROP. Methods. Fugl-Meyer Assessments of the upper extremity and high-density electroencephalography (EEG) were obtained from 63 patients, diffusion tensor imaging from 46 patients, at 2 and 4 weeks (T0) and at 3 months (T1) after stroke onset. Results. We confirmed the presence of 2 distinct recovery patterns (PROP and POOR) in our sample. At T0, PROP patients had greater integrity of the corticospinal tract (CST) and greater EEG functional connectivity (FC) between the affected hemisphere and rest of the brain, in particular between the ventral premotor and the primary motor cortex. POOR patients suffered from degradation of corticocortical and corticofugal fiber tracts in the affected hemisphere between T0 and T1, which was not observed in PROP patients. Better initial CST integrity correlated with greater initial global FC, which was in turn associated with less white matter degradation between T0 and T1. Conclusions. These findings suggest links between initial CST integrity, systems-level cortical network plasticity, reduction of white matter atrophy, and clinical motor recovery after stroke. This identifies candidate treatment targets.


2019 ◽  
Vol 122 (1) ◽  
pp. 316-324 ◽  
Author(s):  
Huiling Peng ◽  
Carmen M. Cirstea ◽  
Christina L. Kaufman ◽  
Scott H. Frey

Reductions in sensory and motor activity following unilateral upper limb amputation during adulthood are associated with widespread, activity-dependent reorganization of the gray matter and white matter through the central nervous system. Likewise, in cases of congenital limb absence there is evidence that limited afferent or efferent activity affects the structural integrity of white matter pathways serving the affected side. Evidence that the structural integrity of mature sensory and motor tracts controlling the lost upper limb exhibits similar activity dependence is, however, sparse and inconsistent. Here we used diffusion tensor tractography to test whether amputation of the dominant right hand during adulthood ( n = 16) alters the microstructural integrity of the major sensory (medial lemniscus, ML) and motor (corticospinal tract, CST) pathways controlling missing hand function. Consistent with prior findings, healthy control subjects ( n = 27) exhibited higher fractional anisotropy (FA), an index of white matter microstructural integrity, within dominant left CST and nondominant right ML. Critically, in contrast to what might be expected if the microstructural organization of these tracts is activity dependent, these asymmetries persisted in amputees. Moreover, we failed to detect any differences in dominant left ML or CST between healthy control subjects and amputees. Our results are consistent with these white matter tracts being robust to changes in activity once mature or that continued use of the residual limb (in a compensatory fashion or with prosthesis) provides stimulation sufficient to maintain tract integrity. NEW & NOTEWORTHY We report that unilateral hand amputation in adults has no significant effects on the structure of major sensory or motor pathways contralateral to the amputation. Our results are consistent with the organization of these white matter tracts being robust to changes in activity once mature or that continued use of the residual limb (with or without a prosthesis) provides stimulation sufficient to maintain tract integrity.


2020 ◽  
Vol 34 (9) ◽  
pp. 784-794
Author(s):  
Marieke Blom-Smink ◽  
Marjolein Verly ◽  
Kerstin Spielmann ◽  
Marion Smits ◽  
Gerard M. Ribbers ◽  
...  

Background. Despite progress made in understanding functional reorganization patterns underlying recovery in subacute aphasia, the relation between recovery and changes in white matter structure remains unclear. Objective. To investigate changes in dorsal and ventral language white matter tract integrity in relation to naming recovery in subacute poststroke aphasia. Methods. Ten participants with aphasia after left-hemisphere stroke underwent language testing and diffusion tensor imaging twice within 3 months post onset, with a 1-month interval between sessions. Deterministic tractography was used to bilaterally reconstruct the superior longitudinal fasciculus (SLF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), middle longitudinal fasciculus (MdLF), and uncinate fasciculus (UF). Per tract, the mean fractional anisotropy (FA) was extracted as a measure of microstructural integrity. Naming accuracy was assessed with the Boston Naming Test (BNT). Correlational analyses were performed to investigate the relationship between changes in FA values and change in BNT score. Results. A strong positive correlation was found between FA change in the right ILF within the ventral stream and change on the BNT ( r = 0.91, P < .001). An increase in FA in the right ILF was associated with considerable improvement of naming accuracy (range BNT change score: 12-14), a reduction with limited improvement or slight deterioration. No significant correlations were found between change in naming accuracy and FA change in any of the other right or left ventral and dorsal language tracts. Conclusions. Naming recovery in subacute aphasia is associated with change in the integrity of the right ILF.


Neurology ◽  
2018 ◽  
Vol 91 (12) ◽  
pp. e1166-e1174 ◽  
Author(s):  
Dániel Veréb ◽  
Nikoletta Szabó ◽  
Bernadett Tuka ◽  
János Tajti ◽  
András Király ◽  
...  

ObjectiveTo examine whether interictal plasma pituitary adenylate cyclase-activating peptide 38-like immunoreactivity (PACAP38-LI) shows correlation with the microstructural integrity of the white matter in migraine.MethodsInterictal plasma PACAP38-LI was measured by radioimmunoassay in 26 patients with migraine (24 women) who underwent diffusion tensor imaging afterward using a 1.5-tesla magnetic resonance scanner. Data were analyzed using tract-based spatial statistics included in FMRIB's Software Library.ResultsInterictal plasma PACAP38-LI showed significant correlation with mean diffusivity (p < 0.0179) mostly in the bilateral occipital white matter spreading into parietal and temporal white matter. Axial and radial diffusivity showed positive correlation with interictal PACAP38-LI (p < 0.0432 and p < 0.0418, respectively) in the left optic radiation and left posterior corpus callosum. Fractional anisotropy did not correlate significantly with PACAP38-LI. With disease duration as a nuisance regressor in the model, PACAP38-LI correlated with axial and mean diffusivity in the left thalamus (p < 0.01).ConclusionWe report a link between PACAP38, a pathobiologically important neurochemical biomarker, and imaging markers of the disease that may bolster further research into the role of PACAP38 in migraine.


2011 ◽  
Vol 32 (1) ◽  
pp. 100-109 ◽  
Author(s):  
Yangho Kim ◽  
Kyoung Sook Jeong ◽  
Hui-Jin Song ◽  
Jae-Jun Lee ◽  
Jee-Hye Seo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document