scholarly journals Dynamics of a Stochastic SIRS Epidemic Model with Regime Switching and Specific Functional Response

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Amine EL Koufi ◽  
Abdelkrim Bennar ◽  
Noura Yousfi

The purpose of this work is to investigate the dynamic behaviors of the SIRS epidemic model with nonlinear incident rate under regime switching. We establish the existence of a unique positive solution of our system. Furthermore, we obtain the conditions for the extinction of diseases, and we show the existence of the stationary distribution for our stochastic SIRS model under regime switching. Numerical simulations are employed to illustrate our theoretical analysis.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hongxia Liu ◽  
Juan Li ◽  
Mengnan Chi ◽  
Jinlei Liu ◽  
Wencai Zhao

In this paper, taking both white noises and colored noises into consideration, a nonlinear stochastic SIRS epidemic model with regime switching is explored. The threshold parameter R s is found, and we investigate sufficient conditions for the existence of the ergodic stationary distribution of the positive solution. Finally, some numerical simulations are also carried out to demonstrate the analytical results.


2012 ◽  
Vol 155-156 ◽  
pp. 23-26
Author(s):  
Jun Hong Li ◽  
Ning Cui ◽  
Liang Cui ◽  
Cai Juan Li

In this paper, we study the global dynamics of an SIRS epidemic model with nonlinear inci- dence rate. By means of Dulac function and Poincare-Bendixson Theorem, we proved the global asy- mptotical stable results of the disease-free equilibrium. It is then obtained the model undergoes Hopf bifurcation and existence of one limit cycle. Some numerical simulations are given to illustrate the an- alytical results.


Author(s):  
Jiang Xu ◽  
Yinong Wang ◽  
Zhongwei Cao

The goal of this paper is to introduce and initiate a study of a stochastic SIRS epidemic model with standard incidence which is perturbed by both white and telegraph noises. We first show persistence in the mean and then establish the sufficient conditions for extinction of the disease. Moreover, in the case of persistence, we obtain sufficient conditions for the existence of positive recurrence of the solutions by means of structuring suitable stochastic Lyapunov function with regime switching. Meanwhile, the threshold between persistence in the mean and extinction of the stochastic system is also obtained. Finally, we test our theory conclusion by simulations.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Feng Feng ◽  
Zong Wang

Sudden environmental perturbations may affect the positivity of the solution of the susceptible-infected-recovered-susceptible (SIRS) model. Most of the SIRS epidemic models have no analytical solution. Thus, in order to find the appropriate solution, the numerical technique becomes more essential for us to solve the dynamic behavior of epidemics. In this paper, we are concerned with the positivity of the numerical solution of a stochastic SIRS epidemic model. A new numerical method that is the balanced implicit method (BIM) is set, which preserves the positivity under given conditions. The BIM method can maintain positive numerical solution. An illustrative numerical instance is presented for the numerical BIM of the stochastic SIRS model.


Author(s):  
Xiangyun Shi ◽  
Yimeng Cao

Dynamical behaviors of a stochastic periodic SIRS epidemic model with time delay are investigated. By constructing suitable Lyapunov functions and applying Itô’s formula, the existence of the global positive solution and the property of stochastically ultimate boundedness of model (1.1) are proved. Moreover, the extinction and the persistence of the disease are established. The results are verified by numerical simulations.


Author(s):  
Amine EL Koufi ◽  
Abdelkrim Bennar ◽  
Noura Yousfi ◽  
M Pitchaimani

In this paper, we consider a stochastic SIRS epidemic model with nonlinear incidence and Markovian switching. By using the stochastic calculus background, we establish that the stochastic threshold R_{ swt}  can be used to determine the compartment dynamics of the stochastic system. Some examples and numerical simulations are presented to confirm the theoretical results established in this paper.


Author(s):  
Junna Hu ◽  
Buyu Wen ◽  
Ting Zeng ◽  
Zhidong Teng

Abstract In this paper, a stochastic susceptible-infective-recovered (SIRS) epidemic model with vaccination, nonlinear incidence and white noises under regime switching and Lévy jumps is investigated. A new threshold value is determined. Some basic assumptions with regard to nonlinear incidence, white noises, Markov switching and Lévy jumps are introduced. The threshold conditions to guarantee the extinction and permanence in the mean of the disease with probability one and the existence of unique ergodic stationary distribution for the model are established. Some new techniques to deal with the Markov switching, Lévy jumps, nonlinear incidence and vaccination for the stochastic epidemic models are proposed. Lastly, the numerical simulations not only illustrate the main results given in this paper, but also suggest some interesting open problems.


2014 ◽  
Vol 4 (2) ◽  
pp. 101-116 ◽  
Author(s):  
Aadil Lahrouz ◽  
Lahcen Omari ◽  
Adel Settati ◽  
Aziza Belmaâti

Author(s):  
Jiandong Zhao ◽  
Tonghua Zhang ◽  
Zhixia Han

AbstractTo study the effect of environmental noise on the spread of the disease, a stochastic Susceptible, Infective, Removed and Susceptible (SIRS) model with two viruses is introduced in this paper. Sufficient conditions for global existence of positive solution and stochastically asymptotic stability of disease-free equilibrium in the model are given. Then, it is shown that the positive solution is stochastically ultimately bounded and the moment average in time of the positive solution is bounded. Our results mean that the environmental noise suppresses the growth rate of the individuals and drives the disease to extinction under certain conditions. Finally, numerical simulations are given to illustrate our main results.


Sign in / Sign up

Export Citation Format

Share Document