scholarly journals Tissue Distribution of Hirsutine and Hirsuteine in Mice by Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Quan Zhou ◽  
Jianshe Ma ◽  
Limei Chen

Hirsutine and hirsuteine were two alkaloid monomers extracted from the traditional Chinese medicine Uncaria rhynchophylla, which have pharmacological effects such as antihypertension, anti-infection, and heart protection. An ultrahigh-performance liquid chromatography-mass spectrometry was established for the determination of hirsutine and hirsuteine in tissues (liver, kidney, heart, spleen, brain, and lung), and their absorption, distribution, and metabolism were studied for providing information on its pharmacological mechanism. UPLC BEH C18 column (2.1  mm × 100  mm, 1.7 μm) was used for chromatographic separation. The mobile phase was acetonitrile-0.1% formic acid, with a gradient elution, and the total run time was 4 min. Electrospray was used in the positive ion mode, and the multiple reaction monitoring (MRM) mode was for quantification. The acetonitrile precipitation method was used to remove protein-treated mouse plasma and tissue homogenate samples. In the concentration range of 2–5000 ng/g, hirsutine and hirsuteine in tissues showed good linearity (r > 0.995), and the lower limit of quantification was 2 ng/g. In the plasma and liver tissues, the interday and intraday precision of hirsutine and hirsuteine was less than 15%, the accuracy was between 90.9% and 110.1%, and the average recovery was better than 73.0%. The matrix effect was between 86.2% and 104.7%. The results showed that the precision, accuracy, recovery, and matrix effects meet the requirements for the study on the distribution of hirsutine and hirsuteine. After intraperitoneal administration of 10 mg/kg hirsutine and hirsuteine in mice, the distribution levels were highest in liver and kidney tissues, followed by the spleen and lung. Hirsutine and hirsuteine were low in brain tissue, but had obvious distribution, suggesting that they may pass through the blood-brain barrier.

2006 ◽  
Vol 52 (5) ◽  
pp. 872-879 ◽  
Author(s):  
Eduard Rogatsky ◽  
Beate Balent ◽  
Gayotri Goswami ◽  
Vlad Tomuta ◽  
Harsha Jayatillake ◽  
...  

Abstract Background: Isotope-dilution assays (IDAs) are well established for quantification of metabolites or small drug molecules in biological fluids. Because of their increased specificity, IDAs are an alternative to immunoassays for measuring C-peptide. Methods: We evaluated a 2-dimensional liquid chromatography–mass spectrometry (2D LC/MS) IDA method. Sample preparation was by off-line solid-phase extraction, and C-peptide separation was performed on an Agilent 1100 2D LC system with a purification method based on high-pressure switching between 2 high-resolution reversed-phase columns. Because of the low fragmentation efficiency of C-peptide, multiple-reaction monitoring analysis was omitted and selective-ion monitoring mode was chosen for quantification. Native and isotope-labeled ([M+18] and [M+30]) C-peptides were monitored in the +3 state at m/z 1007.7, 1013.7, and 1017.7. Results: The assay was linear (r2 = 0.9995), with a detection limit of 300 amole (1 pg) on column. Inter- and intraday CVs for C-peptide were ≤2%. Comparison with an established polyclonal-based RIA showed high correlation (r = 0.964). Plasma concentrations of total C-peptide measured by RIA were consistently higher than by IDA LC/MS, consistent with the higher specificity of IDAs compared with immunoassays. Conclusions: The 2D LC/MS IDA approach eliminates matrix effects, enhancing assay performance and reliability, and has a detection limit 100-fold lower than any previously reported LC/MS method. Isotope-labeled C-peptide(s) can be clearly differentiated from endogenous C-peptide by the difference in m/z ratio, so that both peptides can be quantified simultaneously. The method is highly precise, robust, and applicable to pharmacokinetic detection of plasma peptides.


2008 ◽  
Vol 80 (23) ◽  
pp. 9343-9348 ◽  
Author(s):  
Achille Cappiello ◽  
Giorgio Famiglini ◽  
Pierangela Palma ◽  
Elisabetta Pierini ◽  
Veronica Termopoli ◽  
...  

Author(s):  
Narottam Pal ◽  
Avanapu Srinivasa Rao ◽  
Pigilli Ravikumar

<p><strong>Objective</strong>:<strong> </strong>To develop a new method and validate the same for the determination of Febuxostat (FBS) in human plasma by liquid chromatography–mass spectrometry (LCMS).</p><p><strong>Methods</strong>:<strong> </strong>The present method utilized reversed-phase high-performance liquid chromatography with tandem mass spectroscopy. Febuxostat D9 (FBS D9) was used as internal standard (IS). The analyte and internal standard were separated from human plasma by using solid phase extraction method. Zorbax Eclipse XDB, C<sub>8</sub>, 100 mm x 4.6 mm, 3.5 µm column was used and HPLC grade acetonitrile, 5 millimolar (mM) ammonium format (80: 20, v/v) as mobile phase, detected by mass spectrometry operating in positive ion and multiple reaction monitoring modes.</p><p><strong>Results</strong>:<strong> </strong>The parent and production transitions for FBS and internal standard were at m/z 317.1→261.0 and 326.1→262.0 respectively. The method was validated for system suitability, specificity, carryover effect, linearity, precision, accuracy, matrix effect, sensitivity and stability. The linearity range was from 20.131 ng/ml to10015. 534 ng/ml with a correlation coefficient of 0.999. Precision results (%CV) across six quality control samples were within the limit. The percentage recovery of FBS and internal standard from matrix samples was found to be 76.57% and 75.03% respectively.</p><p><strong>Conclusion</strong>:<strong> </strong>Present study describes new LC-MS method for the quantification of FBS in a pharmaceutical formulation. According to validation results, it was found to be a simple, sensitive, accurate and precise method and also free from any kind of interference. Therefore the proposed analytical method can be used for routine analysis for the estimation of FBS in its formulation.</p>


Sign in / Sign up

Export Citation Format

Share Document