scholarly journals A New Generative Neural Network for Bearing Fault Diagnosis with Imbalanced Data

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Wei You ◽  
Changqing Shen ◽  
Liang Chen ◽  
Hongbo Que ◽  
Weiguo Huang ◽  
...  

Intelligent bearing fault diagnosis has received much research attention in the field of rotary machinery systems where miscellaneous deep learning methods are generally applied. Among these methods, convolution neural network is particularly powerful because of its ability to learn fruitful features from the original data. However, normal convolutions cannot fully utilize the information along the data flow while the features are being abstracted in deeper layers. To address this problem, a new supervised learning model is proposed for small sample size bearing fault diagnosis with consideration of imbalanced data. This model, which is developed based on a convolution neural network, has a high generalization ability, and its performance is verified by conducting two experiments that use data collected from a self-made bearing test rig. The proposed model demonstrates a favorable performance and is more effective and robust than other deep learning methods.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5150
Author(s):  
Shiza Mushtaq ◽  
M. M. Manjurul Islam ◽  
Muhammad Sohaib

This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3937 ◽  
Author(s):  
Tengda Huang ◽  
Sheng Fu ◽  
Haonan Feng ◽  
Jiafeng Kuang

Recently, deep learning technology was successfully applied to mechanical fault diagnosis. The convolutional neural network (CNN), as a prevalent deep learning model, occupies a place in intelligent fault diagnosis, which reduces the need for human feature extraction and prior knowledge, thereby achieving an end-to-end intelligent fault diagnosis model. However, the data for mechanical fault diagnosis in practical application are limited, the CNN model is too deep and too complex, making it prone to overfitting, and a model with too simple a structure and shallow layers cannot fully learn the effective features of the data. Convolutional filters with fixed window sizes are widely used in existing CNN models, which cannot flexibly select variable pivotal features. The model may be interfered with by redundant information in feature maps during training. Therefore, in this paper, a novel shallow multi-scale convolutional neural network with attention is proposed for bearing fault diagnosis. The shallow multi-scale convolutional neural network structure can fully learn the feature information of input data without overfitting. For the first time, a feature attention mechanism is developed for fault diagnosis to adaptively select features for classification more effectively, where the pivotal feature was emphasized, and the redundant feature was weakened through an attention mechanism. The time frequency representations as the input of the model were obtained from the vibration time domain signals, which contain the complete time domain and frequency domain information of the vibration signals. Compared with the current popular diagnostic methods, the results show that the proposed diagnostic method has fairly high accuracy, and its performance is superior to the existing methods. The average recognition accuracy was 99.86%, and the weak recognition rate of I-07 and I-14 labels was improved.


Sign in / Sign up

Export Citation Format

Share Document