scholarly journals Rapid Penetration Path Planning Method for Stealth UAV in Complex Environment with BB Threats

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Zhe Zhang ◽  
Jian Wu ◽  
Jiyang Dai ◽  
Cheng He

This paper presents the flight penetration path planning algorithm in a complex environment with Bogie or Bandit (BB) threats for stealth unmanned aerial vehicle (UAV). The emergence of rigorous air defense radar net necessitates efficient flight path planning and replanning for stealth UAV concerning survivability and penetration ability. We propose the improved A-Star algorithm based on the multiple step search approach to deal with this uprising problem. The objective is to achieve rapid penetration path planning for stealth UAV in a complex environment. Firstly, the combination of single-base radar, dual-base radar, and BB threats is adopted to different threat scenarios which are closer to the real combat environment. Besides, the multistep search strategy, the prediction technique, and path planning algorithm are developed for stealth UAV to deal with BB threats and achieve the penetration path replanning in complex scenarios. Moreover, the attitude angle information is integrated into the flight path which can meet real flight requirements for stealth UAV. The theoretical analysis and numerical results prove the validity of our method.

2019 ◽  
Vol 9 (7) ◽  
pp. 1470 ◽  
Author(s):  
Abdul Majeed ◽  
Sungchang Lee

This paper presents a new coverage flight path planning algorithm that finds collision-free, minimum length and flyable paths for unmanned aerial vehicle (UAV) navigation in three-dimensional (3D) urban environments with fixed obstacles for coverage missions. The proposed algorithm significantly reduces computational time, number of turns, and path overlapping while finding a path that passes over all reachable points of an area or volume of interest by using sensor footprints’ sweeps fitting and a sparse waypoint graph in the pathfinding process. We devise a novel footprints’ sweep fitting method considering UAV sensor footprint as coverage unit in the free spaces to achieve maximal coverage with fewer and longer footprints’ sweeps. After footprints’ sweeps fitting, the proposed algorithm determines the visiting sequence of footprints’ sweeps by formulating it as travelling salesman problem (TSP), and ant colony optimization (ACO) algorithm is employed to solve the TSP. Furthermore, we generate a sparse waypoint graph by connecting footprints’ sweeps’ endpoints to obtain a complete coverage flight path. The simulation results obtained from various scenarios fortify the effectiveness of the proposed algorithm and verify the aforementioned claims.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Zahoor Ahmad ◽  
Farman Ullah ◽  
Cong Tran ◽  
Sungchang Lee

This paper presents the flight path planning algorithm in a 3-dimensional environment with fixed obstacles for small unmanned aerial vehicles (SUAVs). The emergence of SUAVs for commercial uses with low-altitude flight necessitates efficient flight path planning concerning economical energy consumption. We propose the visibility roadmap based on the visibility graph approach to deal with this uprising problem. The objective is to approximate the collision-free and energy-efficient flight path of SUAVs for flight missions in a considerable time complexity. Stepwise, we describe the construction of the proposed pathfinding algorithm in a convex static obstacle environment. The theoretical analysis and simulation results prove the effectiveness of our method.


Author(s):  
H. H. Triharminto ◽  
A.S. Prabuwono ◽  
T. B. Adji ◽  
N. A. Setiawan

Most of the 3D curve path planning is used to build static path planning. For intercepting of a moving target, the path planning has to be set in a dynamic condition. L+Dumo algorithm which is based on curve is used to intercept a moving target. In the real situations, the Unmanned Aerial Vehicle (UAV) has possibility to intercept a moving target from all direction. It is assumed that environment of the UAV is in 3D Euclidean Space. It means that the UAV has to adapt for all quadrants for interception of a moving target. This research develops a path planning algorithm which enhances the previous L+Dumo algorithm to encounter the possibility quadrants. The enhancement would be simulated in C++ language to determine the accuracy of the algorithm. The simulation is conducted using one UAV and one moving target with random obstacles of cylindrical shape in between both objects. The result shows that the system accuracy is 81.0876%, a level which is able to encounter all possibility quadrants.


Sign in / Sign up

Export Citation Format

Share Document