scholarly journals Unified Quantile Regression Deep Neural Network with Time-Cognition for Probabilistic Residential Load Forecasting

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Zhuofu Deng ◽  
Binbin Wang ◽  
Heng Guo ◽  
Chengwei Chai ◽  
Yanze Wang ◽  
...  

Residential load forecasting is important for many entities in the electricity market, but the load profile of single residence shows more volatilities and uncertainties. Due to the difficulty in producing reliable point forecasts, probabilistic load forecasting becomes more popular as a result of catching the volatility and uncertainty by intervals, density, or quantiles. In this paper, we propose a unified quantile regression deep neural network with time-cognition for tackling this challenging issue. At first, a convolutional neural network with multiscale convolution is devised for extracting more behavioral features from the historical load sequence. In addition, a novel periodical coding method marks the model to enhance its ability of capturing regular load pattern. Then, features generated from both subnetworks are fused and fed into the forecasting model with an end-to-end manner. Besides, a globally differentiable quantile loss function constrains the whole network for training. At last, forecasts of multiple quantiles are directly generated in one shot. With ablation experiments, the proposed model achieved the best results in the AQS, AACE, and inversion error, and especially the average of the AACE is grown by 34.71%, 75.22%, and 32.44% compared with QGBRT, QCNN, and QLSTM, respectively, indicating that our method has excellent reliability and robustness rather than the state-of-the-art models obviously. Meanwhile, great performances of efficient time response demonstrate that our proposed work has promising prospects in practical applications.

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2467 ◽  
Author(s):  
Kailai Ni ◽  
Jianzhou Wang ◽  
Guangyu Tang ◽  
Danxiang Wei

Electricity load forecasting plays an essential role in improving the management efficiency of power generation systems. A large number of load forecasting models aiming at promoting the forecasting effectiveness have been put forward in the past. However, many traditional models have no consideration for the significance of data preprocessing and the constraints of individual forecasting models. Moreover, most of them only focus on the forecasting accuracy but ignore the forecasting stability, resulting in nonoptimal performance in practical applications. This paper presents a novel hybrid model that combines an advanced data preprocessing strategy, a deep neural network, and an avant-garde multi-objective optimization algorithm, overcoming the defects of traditional models and thus improving the forecasting performance effectively. In order to evaluate the validity of the proposed hybrid model, the electricity load data sampled in 30-min intervals from Queensland, Australia are used as a case to study. The experiments show that the new proposed model is obviously superior to all other traditional models. Furthermore, it provides an effective technical forecasting means for smart grid management.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2979
Author(s):  
Manuel Lopez-Martin ◽  
Antonio Sanchez-Esguevillas ◽  
Luis Hernandez-Callejo ◽  
Juan Ignacio Arribas ◽  
Belen Carro

This work proposes a quantile regression neural network based on a novel constrained weighted quantile loss (CWQLoss) and its application to probabilistic short and medium-term electric-load forecasting of special interest for smart grids operations. The method allows any point forecast neural network based on a multivariate multi-output regression model to be expanded to become a quantile regression model. CWQLoss extends the pinball loss to more than one quantile by creating a weighted average for all predictions in the forecast window and across all quantiles. The pinball loss for each quantile is evaluated separately. The proposed method imposes additional constraints on the quantile values and their associated weights. It is shown that these restrictions are important to have a stable and efficient model. Quantile weights are learned end-to-end by gradient descent along with the network weights. The proposed model achieves two objectives: (a) produce probabilistic (quantile and interval) forecasts with an associated probability for the predicted target values. (b) generate point forecasts by adopting the forecast for the median (0.5 quantiles). We provide specific metrics for point and probabilistic forecasts to evaluate the results considering both objectives. A comprehensive comparison is performed between a selection of classic and advanced forecasting models with the proposed quantile forecasting model. We consider different scenarios for the duration of the forecast window (1 h, 1-day, 1-week, and 1-month), with the proposed model achieving the best results in almost all scenarios. Additionally, we show that the proposed method obtains the best results when an additive ensemble neural network is used as the base model. The experimental results are drawn from real loads of a medium-sized city in Spain.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Fei Wang ◽  
Chenglong Wang ◽  
Mingliang Chen ◽  
Wenlin Gong ◽  
Yu Zhang ◽  
...  

AbstractGhost imaging (GI) facilitates image acquisition under low-light conditions by single-pixel measurements and thus has great potential in applications in various fields ranging from biomedical imaging to remote sensing. However, GI usually requires a large amount of single-pixel samplings in order to reconstruct a high-resolution image, imposing a practical limit for its applications. Here we propose a far-field super-resolution GI technique that incorporates the physical model for GI image formation into a deep neural network. The resulting hybrid neural network does not need to pre-train on any dataset, and allows the reconstruction of a far-field image with the resolution beyond the diffraction limit. Furthermore, the physical model imposes a constraint to the network output, making it effectively interpretable. We experimentally demonstrate the proposed GI technique by imaging a flying drone, and show that it outperforms some other widespread GI techniques in terms of both spatial resolution and sampling ratio. We believe that this study provides a new framework for GI, and paves a way for its practical applications.


2020 ◽  
Vol 11 (6) ◽  
pp. 5442-5450
Author(s):  
Wenjie Zhang ◽  
Hao Quan ◽  
Oktoviano Gandhi ◽  
Ram Rajagopal ◽  
Chin-Woo Tan ◽  
...  

2019 ◽  
Vol 9 (7) ◽  
pp. 1487 ◽  
Author(s):  
Fei Mei ◽  
Qingliang Wu ◽  
Tian Shi ◽  
Jixiang Lu ◽  
Yi Pan ◽  
...  

Recently, a large number of distributed photovoltaic (PV) power generations have been connected to the power grid, which resulted in an increased fluctuation of the net load. Therefore, load forecasting has become more difficult. Considering the characteristics of the net load, an ultrashort-term forecasting model based on phase space reconstruction and deep neural network (DNN) is proposed, which can be divided into two steps. First, the phase space reconstruction of the net load time series data is performed using the C-C method. Second, the reconstructed data is fitted by the DNN to obtain the predicted value of the net load. The performance of this model is verified using real data. The accuracy is high in forecasting the net load under high PV penetration rate and different weather conditions.


Sign in / Sign up

Export Citation Format

Share Document