scholarly journals Boundary Value Problem of Nonlinear Hybrid Differential Equations with Linear and Nonlinear Perturbations

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Said Melliani ◽  
Abdelati El Allaoui ◽  
Lalla Saadia Chadli

The aim of this paper is to study a boundary value problem of the hybrid differential equation with linear and nonlinear perturbations. It generalizes the existing problem of second type. The existence result is constructed using the Leray–Schauder alternative, and the uniqueness is guaranteed by Banach’s fixed-point theorem. Towards the end of this paper, an example is provided to illustrate the obtained results.

2020 ◽  
Vol 1 ◽  
pp. 23-32
Author(s):  
B.D. Karande ◽  
Pravin M. More

In this work we study the existence and extremal solution for the boundary value problem of the nonlinear hybrid fractional differential equation by using hybrid fixed point theorem in Banach Algebra due to Dhage’s theorem.


Author(s):  
Sandip Moi ◽  
Suvankar Biswas ◽  
Smita Pal(Sarkar)

AbstractIn this article, some properties of neutrosophic derivative and neutrosophic numbers have been presented. This properties have been used to develop the neutrosophic differential calculus. By considering different types of first- and second-order derivatives, different kind of systems of derivatives have been developed. This is the first time where a second-order neutrosophic boundary-value problem has been introduced with different types of first- and second-order derivatives. Some numerical examples have been examined to explain different systems of neutrosophic differential equation.


1997 ◽  
Vol 4 (6) ◽  
pp. 557-566
Author(s):  
B. Půža

Abstract Sufficient conditions of solvability and unique solvability of the boundary value problem u (m)(t) = f(t, u(τ 11(t)), . . . , u(τ 1k (t)), . . . , u (m–1)(τ m1(t)), . . . . . . , u (m–1)(τ mk (t))), u(t) = 0, for t ∉ [a, b], u (i–1)(a) = 0 (i = 1, . . . , m – 1), u (m–1)(b) = 0, are established, where τ ij : [a, b] → R (i = 1, . . . , m; j = 1, . . . , k) are measurable functions and the vector function f : ]a, b[×Rkmn → Rn is measurable in the first and continuous in the last kmn arguments; moreover, this function may have nonintegrable singularities with respect to the first argument.


2014 ◽  
Vol 937 ◽  
pp. 695-699
Author(s):  
Hong E Li ◽  
Xiao Xu Dong ◽  
Shun Chu Li ◽  
Dong Dong Gui ◽  
Cong Yin Fan

The similar structure of solution for the boundary value problem of second order linear homogeneous differential equation has been studied. Based on the analysis of the relationship between similar structure of solution, its kernel function, the equation and boundary conditions, similar constructive method (shortened as SCM) of solution is obtained. According to the SCM, the similar structure of solution and its kernel function are constructed for the mathematical model of homogeneous reservoir which considers the influence of bottom-hole storage and skin effect under the infinite outer boundary condition. The SCM is a new and innovative way to solve boundary value problem of differential equation and seepage flow theory, which is especially used in Petroleum Engineering.


Sign in / Sign up

Export Citation Format

Share Document