scholarly journals Digital System Design for Quantum Error Correction Codes

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Othman O. Khalifa ◽  
Nur Amirah bt Sharif ◽  
Rashid A Saeed ◽  
S. Abdel-Khalek ◽  
Abdulaziz N. Alharbi ◽  
...  

Quantum computing is a computer development technology that uses quantum mechanics to perform the operations of data and information. It is an advanced technology, yet the quantum channel is used to transmit the quantum information which is sensitive to the environment interaction. Quantum error correction is a hybrid between quantum mechanics and the classical theory of error-correcting codes that are concerned with the fundamental problem of communication, and/or information storage, in the presence of noise. The interruption made by the interaction makes transmission error during the quantum channel qubit. Hence, a quantum error correction code is needed to protect the qubit from errors that can be caused by decoherence and other quantum noise. In this paper, the digital system design of the quantum error correction code is discussed. Three designs used qubit codes, and nine-qubit codes were explained. The systems were designed and configured for encoding and decoding nine-qubit error correction codes. For comparison, a modified circuit is also designed by adding Hadamard gates.

2008 ◽  
Vol 15 (04) ◽  
pp. 329-343 ◽  
Author(s):  
David W. Kribs ◽  
Aron Pasieka ◽  
Karol Życzkowski

We define and investigate the notion of entropy for quantum error correcting codes. The entropy of a code for a given quantum channel has a number of equivalent realisations, such as through the coefficients associated with the Knill-Laflamme conditions and the entropy exchange computed with respect to any initial state supported on the code. In general the entropy of a code can be viewed as a measure of how close it is to the minimal entropy case, which is given by unitarily correctable codes (including decoherence-free subspaces), or the maximal entropy case, which from dynamical Choi matrix considerations corresponds to non-degenerate codes. We consider several examples, including a detailed analysis of the case of binary unitary channels, and we discuss an extension of the entropy to operator quantum error correcting subsystem codes.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Chun-Jun Cao

In this note, I review a recent approach to quantum gravity that “gravitizes” quantum mechanics by emerging geometry and gravity from complex quantum states. Drawing further insights from tensor network toy models in AdS/CFT, I propose that approximate quantum error correction codes, when re-adapted into the aforementioned framework, also have promise in emerging gravity in near-flat geometries.


Author(s):  
Dongsheng Wang ◽  
Yunjiang Wang ◽  
Ningping Cao ◽  
Bei Zeng ◽  
Raymond Lafflamme

Abstract In this work, we develop the theory of quasi-exact fault-tolerant quantum (QEQ) computation, which uses qubits encoded into quasi-exact quantum error-correction codes (``quasi codes''). By definition, a quasi code is a parametric approximate code that can become exact by tuning its parameters. The model of QEQ computation lies in between the two well-known ones: the usual noisy quantum computation without error correction and the usual fault-tolerant quantum computation, but closer to the later. Many notions of exact quantum codes need to be adjusted for the quasi setting. Here we develop quasi error-correction theory using quantum instrument, the notions of quasi universality, quasi code distances, and quasi thresholds, etc. We find a wide class of quasi codes which are called valence-bond-solid codes, and we use them as concrete examples to demonstrate QEQ computation.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 172623-172643
Author(s):  
Josu Etxezarreta Martinez ◽  
Patricio Fuentes ◽  
Pedro M. Crespo ◽  
J. Garcia-Frias

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Savvas Varsamopoulos ◽  
Koen Bertels ◽  
Carmen G. Almudever

Abstract There has been a rise in decoding quantum error correction codes with neural network–based decoders, due to the good decoding performance achieved and adaptability to any noise model. However, the main challenge is scalability to larger code distances due to an exponential increase of the error syndrome space. Note that successfully decoding the surface code under realistic noise assumptions will limit the size of the code to less than 100 qubits with current neural network–based decoders. Such a problem can be tackled by a distributed way of decoding, similar to the renormalization group (RG) decoders. In this paper, we introduce a decoding algorithm that combines the concept of RG decoding and neural network–based decoders. We tested the decoding performance under depolarizing noise with noiseless error syndrome measurements for the rotated surface code and compared against the blossom algorithm and a neural network–based decoder. We show that a similar level of decoding performance can be achieved between all tested decoders while providing a solution to the scalability issues of neural network–based decoders.


2020 ◽  
Vol 101 (4) ◽  
Author(s):  
Paweł Mazurek ◽  
Máté Farkas ◽  
Andrzej Grudka ◽  
Michał Horodecki ◽  
Michał Studziński

Sign in / Sign up

Export Citation Format

Share Document