scholarly journals Active and Reactive Power Control for Wind Turbines Based DFIG Using LQR Controller with Optimal Gain-Scheduling

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Ashraf Radaideh ◽  
Mu’men Bodoor ◽  
Ayman Al-Quraan

This paper proposes an optimal gain-scheduling for linear quadratic regulator (LQR) control framework to improve the performance of wind turbines based Doubly Fed Induction Generator (DFIG). Active and reactive power decoupling is performed using the field-oriented vector control which is used to simplify DFIG’s nonlinearity and derive a compact linearized state-space model. The performance of the optimal controller represented by a linear quadratic regulator is further enhanced using the whale optimization algorithm in a multiobjective optimization environment. Adaptiveness against wind speed variation is achieved in an offline training process at a discretized wind speed domain. Lookup tables are used to store the optimal controller parameter and called upon during the online implementation. The control framework further integrates the effects of pitch angle control mechanism for active power ancillary services and possible improvements on reactive power support. The results of the proposed control framework improve the overall performance of the system compared to the conventional PI controller. Comparison is performed using the MATLAB Simulink platform.

2016 ◽  
Vol 10 (8) ◽  
pp. 1
Author(s):  
Faraz Chamani ◽  
Mohammad Satkin

Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With increase in wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. In this article, a controller is provided to control the active and reactive power of a wind system equipped with doubly fed induction generator. The generator is connected to the grid by a back to back converter that gets benefit from control system known as single periodic controller. Grid and generator side converters respectively control the generator speed and reactive power using proposed controller. In order to increase the accuracy of controller, we optimized its PI parameters using genetic optimization algorithm. Finally, simulation results conducted by the MATLAB software are shown. The results of simulation gained through this system, show the capability of proposed controller under error conditions for controlling active and reactive power and also elimination of harmonics caused by non-linear load.


2019 ◽  
Vol 64 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Lakhdar Saihi ◽  
Brahim Berbaoui ◽  
Hachemi Glaoui ◽  
Larbi Djilali ◽  
Slimani Abdeldjalil

In this study, a Sliding Mode (SM) methodology combined with a robust H∞ control scheme (SM-H∞) was proposed to control the stator active and reactive power generated by the Doubly Fed Induction Generator (DFIG). The purpose of the proposed controller is to improve the DFIG stator active and reactive power tracking performances by reducing chattering phenomena under variable wind speed, which provides major drawbacks of conventional SM controllers. The H∞ technique was used to define the SM attractive control part, which helps to reduce chattering phenomena and improves robustness in the presence of parameter variations and wind speed changing. The DFIG stator was directly connected to the grid and, its rotor was linked to the grid through a back-to-back converter. The proposed approach was tested using Matlab/Simulink and a comparison with the conventional SM and the SM fuzzy logic controllers was carried out. The results of simulation illustrated an effectiveness of the proposed SM-H∞ controller even in the presence of the DFIG parameter variations and speed changing compared with the other techniques.


2011 ◽  
Vol 48-49 ◽  
pp. 335-344
Author(s):  
Meng Zeng Cheng ◽  
Zhen Lan Dou ◽  
Xu Cai

In this paper, a control strategy for operation of rotor side converter (RSC) of Doubly Fed Induction Generators (DFIG) is developed by injecting reactive power into the grid in order to support the grid voltage during and after grid fault events. The novel nonlinear control method is based on differential geometry theory, and exact feedback linearization is applied for control system design of DFIG. Then the optimal control for the linearized system is obtained through introducing the linear quadratic regulator (LQR) design method. Simulation results on a single machine infinite bus power system show that the proposed nonlinear control method can inject reactive power to fault grid rapidly, reduce the oscillation of active power and improve the transient stability of power system.


2021 ◽  
Author(s):  
Xuan Wang ◽  
Xing Chu ◽  
Yunhe Meng ◽  
Guoguang wen ◽  
Qian Jiang

Abstract In this paper, the distributed displacement-based formation and leaderless maneuver guidance control problems of multi-space-robot systems are investigated by introducing event-triggered control update mechanisms. A distributed formation and leaderless maneuver guidance control framework is first constructed, which includes two parallel controllers, namely, an improved linear quadratic regulator and a distributed consensus-based formation controller. By applying this control framework, the desired formation configuration of multi-space-robot systems can be achieved and the center of leaderless formation can converge to the target point globally. Second, a pull-based event triggering mechanism is introduced to the distributed formation controller, which makes the control update independent of the events of neighboring robots, avoids unnecessary control updates, and saves the extremely limited energy of space robots. Furthermore, the potential Zeno behaviors have been excluded by proving a positive lower bound for the inter-event times. Finally, numerical simulation verifies the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document