scholarly journals Numerical, Approximate Solutions, and Optimal Control on the Deathly Lassa Hemorrhagic Fever Disease in Pregnant Women

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
M. Higazy ◽  
A. El-Mesady ◽  
A. M. S. Mahdy ◽  
Sami Ullah ◽  
A. Al-Ghamdi

This paper is devoted to the model of Lassa hemorrhagic fever (LHF) disease in pregnant women. This disease is a biocidal fever and epidemic. LHF disease in pregnant women has negative impacts that were initially appeared in Africa. In the present study, we find an approximate solution to the fractional-order model that describes the fatal LHF disease. Laplace transforms coupled with the Adomian decomposition method (ADM) are applied. In addition, the fractional-order LHF model is numerically simulated in terms of a varied fractional order. Furthermore, a fractional order optimal control for the LHF model is studied.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Asma ◽  
Nigar Ali ◽  
Gul Zaman ◽  
Anwar Zeb ◽  
Vedat Suat Erturk ◽  
...  

This article studies the dynamical behavior of the analytical solutions of the system of fraction order model of HIV-1 infection. For this purpose, first, the proposed integer order model is converted into fractional order model. Then, Laplace-Adomian decomposition method (L-ADM) is applied to solve this fractional order HIV model. Moreover, the convergence of this method is also discussed. It can be observed from the numerical solution that (L-ADM) is very simple and accurate to solve fraction order HIV model.


2020 ◽  
Vol 23 (6) ◽  
pp. 1783-1796
Author(s):  
Neelam Singha

Abstract In this article, we aim to analyze a mathematical model of tumor growth as a problem of fractional optimal control. The considered fractional-order model describes the interaction of effector-immune cells and tumor cells, including combined chemo-immunotherapy. We deduce the necessary optimality conditions together with implementing the Adomian decomposition method on the suggested fractional-order optimal control problem. The key motive is to perform numerical simulations that shall facilitate us in understanding the behavior of state and control variables. Further, the graphical interpretation of solutions effectively validates the applicability of the present analysis to investigate the growth of cancer cells in the presence of medical treatment.


Author(s):  
Pushpendra Kumar ◽  
Vedat Suat Erturk ◽  
Abdullahi Yusuf ◽  
Tukur Abdulkadir Sulaiman

In some of the previous decades, we have observed that mathematical modeling has become one of the most interesting research fields and has attracted many researchers. In this regard, thousands of researchers have proposed different varieties of mathematical models to study the dynamics of a number of real-world problems. This research work is framed to analyzing the structure of the well-known Lassa hemorrhagic epidemic; a dangerous epidemic for pregnant women, via new generalized Caputo type noninteger order derivative with the help of a modified Predictor–Corrector scheme. Lassa hemorrhagic disease is an epidemical and biocidal fever, whose negative impacts were initially recognized in the countries of Africa. This virus has killed many pregnant women as compared to the Ebola epidemic. It was noticed that Lassa virus was isolated in Vero cell cultures from a blood pattern, and after 12 days it was ejective, after the climb of the sickness. In this research study, necessary theorems and lemmas are reminded to prove the existence of a unique solution and stability of given fractional approximation scheme. All necessary results are reminded to confirm the effectiveness of the proposed approximation algorithm by graphical observations for various fractional-order values. In our practical calculations, we plotted the graphs for two different values of natural death rate along with various values of given fractional-order operator. Our major target is to show the importance of the proposed modified version of the Predictor–Corrector algorithm in epidemic studies by exploring the given Lassa hemorrhagic fever dynamics.


2014 ◽  
Vol 69 (5-6) ◽  
pp. 225-231 ◽  
Author(s):  
Anwar Zeb ◽  
Gul Zaman ◽  
Il Hyo Jung ◽  
Madad Khan

This paper deals with the optimal control problem in the giving up smoking model of fractional order. For the eradication of smoking in a community, we introduce three control variables in the form of education campaign, anti-smoking gum, and anti-nicotive drugs/medicine in the proposed fractional order model. We discuss the necessary conditions for the optimality of a general fractional optimal control problem whose fractional derivative is described in the Caputo sense. In order to do this, we minimize the number of potential and occasional smokers and maximize the number of ex-smokers. We use Pontryagin’s maximum principle to characterize the optimal levels of the three controls. The resulting optimality system is solved numerically by MATLAB.


2021 ◽  
Vol 13 (3) ◽  
pp. 715-732
Author(s):  
A. Devi ◽  
M. Jakhar

In this work, a modified decomposition method namely Sumudu-Adomian Decomposition Method (SADM) is implemented to find the exact and approximate solutions of fractional order telegraph equations. The derivatives of fractional-order are expressed in terms of caputo operator. Some numerical examples are illustrated to examine the efficiency of the proposed technique. Solutions of fractional order telegraph equations are obtained in the form of a series solution. It is observed that the solutions of fractional order telegraph equations converge towards the solution of an integer-order problem, which confirmed the reliability of the suggested method.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Aliyu Isa Aliyu ◽  
Ali Saleh Alshomrani ◽  
Yongjin Li ◽  
Mustafa Inc ◽  
Dumitru Baleanu

Abstract In this research work, a mathematical model related to HIV-I cure infection therapy consisting of three populations is investigated from the fractional calculus viewpoint. Fractional version of the model under consideration has been proposed. The proposed model is examined by using the Atangana–Baleanu fractional operator in the Caputo sense (ABC). The theory of Picard–Lindelöf has been employed to prove existence and uniqueness of the special solutions of the proposed fractional-order model. Further, it is also shown that the non-negative hyper-plane $\mathbb{R}_{+}^{3}$ R + 3 is a positively invariant region for the underlying model. Finally, to analyze the results, some numerical simulations are carried out via a numerical technique recently devised for finding approximate solutions of fractional-order dynamical systems. Upon comparison of the numerical simulations, it has been demonstrated that the proposed fractional-order model is more accurate than its classical version. All the necessary computations have been performed using MATLAB R2018a with double precision arithmetic.


Sign in / Sign up

Export Citation Format

Share Document