Stability analysis and optimal control of a fractional-order model for African swine fever

2020 ◽  
Vol 288 ◽  
pp. 198111
Author(s):  
Ruiqing Shi ◽  
Yang Li ◽  
Cuihong Wang
2014 ◽  
Vol 69 (5-6) ◽  
pp. 225-231 ◽  
Author(s):  
Anwar Zeb ◽  
Gul Zaman ◽  
Il Hyo Jung ◽  
Madad Khan

This paper deals with the optimal control problem in the giving up smoking model of fractional order. For the eradication of smoking in a community, we introduce three control variables in the form of education campaign, anti-smoking gum, and anti-nicotive drugs/medicine in the proposed fractional order model. We discuss the necessary conditions for the optimality of a general fractional optimal control problem whose fractional derivative is described in the Caputo sense. In order to do this, we minimize the number of potential and occasional smokers and maximize the number of ex-smokers. We use Pontryagin’s maximum principle to characterize the optimal levels of the three controls. The resulting optimality system is solved numerically by MATLAB.


Fractals ◽  
2020 ◽  
Author(s):  
Zain Ul Abadin Zafar ◽  
Zahir Shah ◽  
Nigar Ali ◽  
Ebraheem O. Alzahrani ◽  
Meshal Shutaywi

Author(s):  
SANTOSHI PANIGRAHI ◽  
Sunita Chand ◽  
S Balamuralitharan

We investigate the fractional order love dynamic model with time delay for synergic couples in this manuscript. The quantitative analysis of the model has been done where the asymptotic stability of the equilibrium points of the model have been analyzed. Under the impact of time delay, the Hopf bifurcation analysis of the model has been done. The stability analysis of the model has been studied with the reproduction number less than or greater than 1. By using Laplace transformation, the analysis of the model has been done. The analysis shows that the fractional order model with a time delay can sufficiently improve the components and invigorate the outcomes for either stable or unstable criteria. In this model, all unstable cases are converted to stable cases under neighbourhood points. For all parameters, the reproduction ranges have been described. Finally, to illustrate our derived results numerical simulations have been carried out by using MATLAB. Under the theoretical outcomes from parameter estimation, the love dynamical system is verified.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
O. Balatif ◽  
L. Boujallal ◽  
A. Labzai ◽  
M. Rachik

In this work, we propose a fractional-order model that describes the dynamics of citizens who have the right to register on the electoral lists and the negative influence of abstainers on the potential electors. By using Routh–Hurwitz criteria and constructing Lyapunov functions, the local and the global stability of abstaining-free equilibrium and abstaining equilibrium are obtained. Finally, some numerical simulations are performed to verify the theoretical analysis, and they are given for different parameter setting of the order of derivative α.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
M. Higazy ◽  
A. El-Mesady ◽  
A. M. S. Mahdy ◽  
Sami Ullah ◽  
A. Al-Ghamdi

This paper is devoted to the model of Lassa hemorrhagic fever (LHF) disease in pregnant women. This disease is a biocidal fever and epidemic. LHF disease in pregnant women has negative impacts that were initially appeared in Africa. In the present study, we find an approximate solution to the fractional-order model that describes the fatal LHF disease. Laplace transforms coupled with the Adomian decomposition method (ADM) are applied. In addition, the fractional-order LHF model is numerically simulated in terms of a varied fractional order. Furthermore, a fractional order optimal control for the LHF model is studied.


Sign in / Sign up

Export Citation Format

Share Document